3 x 3 determinant gives the volume of a parallelopiped

  • Thread starter Thread starter ajayguhan
  • Start date Start date
  • Tags Tags
    Determinant Volume
ajayguhan
Messages
153
Reaction score
1
I know that 3 x 3 determinant gives the volume of a parallelopiped, but how come after the row operations also it's gives the Same volume when it's elements are changed or in another words it's sides are being modified?
 
Physics news on Phys.org
You'll have to be more specific in your description.

If you study the properties of determinants, you'll see that for certain row operations, the determinant isn't changed. This property comes in handy when trying to solve a linear system of equations.

http://en.wikipedia.org/wiki/Determinant
 
In square matrix multiplication of 3 x3 . consider two matrix A, B such that AB =C ,to obtain the c11 element of C, we take a dot product of row 1 of A and column 1 of B. Row 1 of A is vector whose x, y, z components are a11, a12, a13 respectively. But column 1 of B consist of only x component of three vector of B and I'm taking dot product of a vector and x components to get single element or x component of single vector in C.

Note each matrix A and B consist of 3 different vectors specifying a parallelopiped and x, y, z components are written in column 1,2,3 respectively. Det of A and B is non zero

My question how does the dot product of row 1 and column 1 gives the x component of vector in C is there any proof?



Thanks in advance
 
Last edited:
You seem to be under the impression that if matrix "A" has determinant d, then matrix B, derived from A by row operations, has the same determinant. That is NOT true.

For example, swapping two rows multiplies the determinant by -1. Multiplying a row by "a" multiplies the determinant by "a". It is true that "adding a multiple of one row to another" does not change the determinant.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top