3rd degree exponential polynomial

AI Thread Summary
The discussion revolves around solving the equation 2e^{3x} - e^{2x} - 2e^x = 1, which is transformed into a polynomial by substituting u = e^x, resulting in 2u^3 - u^2 - 2u + 1 = 0. Participants clarify that the original question involved using hyperbolic functions defined in terms of exponentials. The conversation highlights the complexity of the solutions, with one user confirming the polynomial has "nice" solutions. Additionally, there is a secondary question about proving that Artanh(Sin(π/4)) equals Ln(1 + √2), which is resolved by simplifying the expression.
W3bbo
Messages
31
Reaction score
0
[SOLVED] 3rd degree exponential polynomial

Homework Statement



Derived from the original question:

"Reduce to find x"

2e^{3x} - e^{2x} - 2e^x = 1

The Attempt at a Solution



Inspection fails, since the answer is transcendental. I have the answer from my CAS, but I can't figure it out myself.
 
Physics news on Phys.org
If you make the substitution u=e^x, then the equation reduces to 2u^3-u^2-2u-1=0. Can you solve this?
 
I haven't worked the thing out , but you might try letting u=e^x and try that.
What was the original question?
I'll play with it more here after we eat.
CC
 
cristo said:
If you make the substitution u=e^x, then the equation reduces to 2u^3-u^2-2u-1=0. Can you solve this?

No, that's my problem. :)
 
W3bbo said:
No, that's my problem. :)

Are you sure that's the right equation? It doesn't have "nice" solutions. What is the original question?
 
cristo said:
Are you sure that's the right equation? It doesn't have "nice" solutions. What is the original question?
It really doesn't, lol.
 
cristo said:
Are you sure that's the right equation? It doesn't have "nice" solutions. What is the original question?

The original question was "Find x, using the definitions of the hyperbolics in terms of exponentials"

...from this expression:

2 = {\mathop{\rm Cosech}\nolimits} \left( x \right) - 2{\mathop{\rm Coth}\nolimits} \left( x \right)

Here's my working so far, reducing down to the final polynomial:

\displaylines{<br /> {\mathop{\rm Cosech}\nolimits} \left( x \right) = {2 \over {e^x - e^{ - x} }} \cr <br /> {\mathop{\rm Coth}\nolimits} \left( x \right) = {{{\mathop{\rm Cosh}\nolimits} \left( x \right)} \over {{\mathop{\rm Sinh}\nolimits} \left( x \right)}} = {{{\textstyle{1 \over 2}}\left( {e^x + e^{ - x} } \right)} \over {{\textstyle{1 \over 2}}\left( {e^x - e^{ - x} } \right)}} = {{e^{2x} + 1} \over {e^{2x} - 1}} \cr}

\displaylines{<br /> 2 = {\mathop{\rm Cosech}\nolimits} \left( x \right) - 2{\mathop{\rm Coth}\nolimits} \left( x \right) \cr <br /> = {2 \over {e^x - e^{ - x} }} - 2\left( {{{e^{2x} + 1} \over {e^{2x} - 1}}} \right) \cr <br /> 1 = {1 \over {e^x - e^{ - x} }} - {{e^{2x} + 1} \over {e^{2x} - 1}} \cr <br /> = {{e^{2x} - 1} \over {\left( {e^x - e^{ - x} } \right)\left( {e^{2x} - 1} \right)}} - \left( {{{e^{2x} + 1} \over {e^{2x} - 1}} \times {{e^x - e^{ - x} } \over {e^x - e^{ - x} }}} \right) \cr <br /> = {{e^{2x} - 1} \over {e^{3x} - 2e^x + e^{ - x} }} - {{e^{3x} - e^{ - x} } \over {e^{3x} - 2e^x + e^{ - x} }} \cr <br /> = {{e^{2x} - 1 - e^{3x} + e^{ - x} } \over {e^{3x} - 2e^x + e^{ - x} }} \cr <br /> e^{3x} - 2e^x + e^{ - x} = e^{2x} - 1 - e^{3x} + e^{ - x} \cr <br /> e^{3x} - 2e^x = e^{2x} - 1 - e^{3x} \cr <br /> 2e^{3x} - e^{2x} - 2e^x = 1 \cr}
 
Your mistake's in your last line!
e^{3x} - 2e^x = e^{2x} - 1 - e^{3x} \Rightarrow 2e^{3x}- e^{2x} - 2e^x=-1, so then the equation you want to solve, letting u=e^x, is 2u^3-u^2-2u+1=0, which does have nice solutions!
 
cristo said:
Your mistake's in your last line!
e^{3x} - 2e^x = e^{2x} - 1 - e^{3x} \Rightarrow 2e^{3x}- e^{2x} - 2e^x=-1, so then the equation you want to solve, letting u=e^x, is 2u^3-u^2-2u+1=0, which does have nice solutions!

Indeed, that solved it. Thank you.

I have one more question to ask:

I need to show that:

{\mathop{\rm Artanh}\nolimits} \left( {{\mathop{\rm Sin}\nolimits} \left( {{\textstyle{\pi \over 4}}} \right)} \right) = {\mathop{\rm Ln}\nolimits} \left( {1 + \sqrt 2 } \right)

Here's my working so far, I don't know where to go from the bottom line:

$\displaylines{<br /> {\mathop{\rm Artanh}\nolimits} \left( x \right) = {\textstyle{1 \over 2}}{\mathop{\rm Ln}\nolimits} \left( {{{x + 1} \over {x - 1}}} \right) \cr <br /> {\mathop{\rm Sin}\nolimits} \left( {{\textstyle{\pi \over 4}}} \right) = {\textstyle{1 \over {\sqrt 2 }}} \cr <br /> {\mathop{\rm Artanh}\nolimits} \left( {{\mathop{\rm Sin}\nolimits} \left( {{\textstyle{\pi \over 4}}} \right)} \right) = {\textstyle{1 \over 2}}{\mathop{\rm Ln}\nolimits} \left( {{{1 + {\textstyle{1 \over {\sqrt 2 }}}} \over {1 - {\textstyle{1 \over {\sqrt 2 }}}}}} \right) \cr <br /> = {\textstyle{1 \over 2}}{\mathop{\rm Ln}\nolimits} \left( {{{{{\sqrt 2 + 1} \over {\sqrt 2 }}} \over {{{\sqrt 2 - 1} \over {\sqrt 2 }}}}} \right) = {\textstyle{1 \over 2}}{\mathop{\rm Ln}\nolimits} \left( {{{\left( {\sqrt 2 + 1} \right)\sqrt 2 } \over {\left( {\sqrt 2 - 1} \right)\sqrt 2 }}} \right) \cr <br /> = {\textstyle{1 \over 2}}{\mathop{\rm Ln}\nolimits} \left( {{{\sqrt 2 + 1} \over {\sqrt 2 - 1}}} \right) \cr <br /> {{\sqrt 2 + 1} \over {\sqrt 2 - 1}} = {{\sqrt 2 + 1} \over {\sqrt 2 - 1}} \times {{1 + \sqrt 2 } \over {1 + \sqrt 2 }} \cr <br /> = {{3 + 2\sqrt 2 } \over 1} = 3 + 2\sqrt 2 \cr <br /> {\mathop{\rm Artanh}\nolimits} \left( {{\mathop{\rm Sin}\nolimits} \left( {{\textstyle{\pi \over 4}}} \right)} \right) = {\textstyle{1 \over 2}}{\mathop{\rm Ln}\nolimits} \left( {3 + 2\sqrt 2 } \right) \cr <br /> = {\mathop{\rm Ln}\nolimits} \left( {\sqrt {3 + 2\sqrt 2 } } \right) \cr <br /> = \cr} $<br /> <br />
 
Last edited:
  • #10
W3bbo said:
The original question was "Find x, using the definitions of the hyperbolics in terms of exponentials"
WOW, way to leave that out. Next time you ask for help, make sure you post the whole question.
 
  • #11
for your second question, you only need to show that
\sqrt {3 + 2\sqrt 2 } =1+\sqrt2<br />
and indeed:
\sqrt {3 + 2\sqrt 2 }=\sqrt {1 + 2\sqrt 2 + 2 }=\sqrt {1^2 + 2\sqrt2 + (\sqrt2)^2 }=\sqrt {(1+\sqrt2)^2}=1+\sqrt2
 
  • #12
Kurret said:
for your second question, you only need to show that
\sqrt {3 + 2\sqrt 2 } =1+\sqrt2<br />
and indeed:
\sqrt {3 + 2\sqrt 2 }=\sqrt {1 + 2\sqrt 2 + 2 }=\sqrt {1^2 + 2\sqrt2 + (\sqrt2)^2 }=\sqrt {(1+\sqrt2)^2}=1+\sqrt2

Whoa, that's voodoo. How did you figure that out?
 

Similar threads

Back
Top