MHB 4-39 magnitude of its velocity after falling 10.0m

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
a) what is its speed after falling to 2.00s
motion formula $v=u+at$
so
$v = 6.00 \dfrac{m}{s}
+ 9.81 \dfrac{m}{s^{\cancel{2}}}{2.00 \cancel{s}}
= 27.6 \dfrac{m}{s}$
b) How far does it fall in 2.00s
distance formula $d= ut + \dfrac{1}{2}at^2$
so
$d=6.00\dfrac{m}{\cancel{s}}\cdot 2.00\cancel{s}
+ \dfrac{1}{2}\cdot 9.81 \dfrac{m}{s^{\cancel{2}}}{(2.00s)^2}
=12.00m+19.62m=31.6m$
c) What is the magnitude of its velocity after falling 10.0m?
graph $a-t, v-t, \textit{ and } y-t$ graphs for the motion.

ok don't have book answer to these and a little ?? on c} and graph
 
Mathematics news on Phys.org
karush said:
a) what is its speed after falling to 2.00s
motion formula $v=u+at$
so
$v = 6.00 \dfrac{m}{s}
+ 9.81 \dfrac{m}{s^{\cancel{2}}}{2.00 \cancel{s}}
= 27.6 \dfrac{m}{s}$
b) How far does it fall in 2.00s
distance formula $d= ut + \dfrac{1}{2}at^2$
so
$d=6.00\dfrac{m}{\cancel{s}}\cdot 2.00\cancel{s}
+ \dfrac{1}{2}\cdot 9.81 \dfrac{m}{s^{\cancel{2}}}{(2.00s)^2}
=12.00m+19.62m=31.6m$
c) What is the magnitude of its velocity after falling 10.0m?
graph $a-t, v-t, \textit{ and } y-t$ graphs for the motion.

ok don't have book answer to these and a little ?? on c} and graph

What information does the original problem statement give prior to asking parts (a), (b), and (c)?
 
4-39 A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's had with a speed of $6.00 m/s$ Air resistance may by ignored, so the water balloon is in free fall after it leaves the throwers hand

a) what is its speed after falling to 2.00s
motion formula is $v=u+at$
so
$v = 6.00 \dfrac{m}{s}
+ 9.81 \dfrac{m}{s^{\cancel{2}}}{2.00 \cancel{s}}
= 27.6 \dfrac{m}{s}$
b) How far does it fall in 2.00s
distance formula $d= ut + \dfrac{1}{2}at^2$
so
$d=6.00\dfrac{m}{\cancel{s}}\cdot 2.00\cancel{s}
+ \dfrac{1}{2}\cdot 9.81 \dfrac{m}{s^{\cancel{2}}}{(2.00s)^2}
=12.00m+19.62m=31.6m$
c) What is the magnitude of its velocity after falling 10.0m?
graph $a-t, v-t, \textit{ and } y-t$ graphs for the motion.

c) ?
 
4-39 A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's had with a speed of [FONT=MathJax_Main]6.00[FONT=MathJax_Math]m[FONT=MathJax_Main]/[FONT=MathJax_Math]s Air resistance may by ignored, so the water balloon is in free fall after it leaves the throwers hand

(a) $v(t) = v_0 - gt$

$v(2) = -6 - g(2) = -25.6 \, m/s$

speed is $|v| = |-25.6| = 25.6 \, m/s$

(b) $\Delta y = v_0 t - \dfrac{1}{2}gt^2$

$\Delta y = -6(2) - \dfrac{1}{2}g(2^2) = -31.6 \, m$

(c) $v_f^2 = v_0^2 - 2g \Delta y$

$v_f = -\sqrt{(-6)^2 - 2g(-10)} = -15.2 \, m/s$

$|v_f| = 15.2 \, m/s$
 
ok, much mahalo

look like I didn't subtract :eek:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top