MHB 411.1.3.15 Prove A\cap(B/C)=(A\cap B)/(A\cap C)

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{411.1.3.15}$

$\text{15. Prove $A\cap(B/C)=(A\cap B)/(A\cap C)$}$
and
$\textsf{19. Let $f:A \to B$ and $g:B \to C$ be in invertable mappings;} \\
\text{that is, mappings such that $f^{-1}$ and $g^{-1}$ exist}\\
\text{Show that $\textit{$(g \, o \, f)^{-1}$}$}$

ok I am starting to do this and want to take a class in it starting 082018
so hope mhb can help me get a head start

text pdf is on pg15 #15 and #19
http://text:http://abstract.ups.edu/download/aata-20150812.pdf
 
Mathematics news on Phys.org
karush said:
$\tiny{411.1.3.15}$

$\text{15. Prove $A\cap(B/C)=(A\cap B)/(A\cap C)$}$
and
$\textsf{19. Let $f:A \to B$ and $g:B \to C$ be in invertable mappings;} \\
\text{that is, mappings such that $f^{-1}$ and $g^{-1}$ exist}\\
\text{Show that $\textit{$(g \, o \, f)^{-1}$}$}$

ok I am starting to do this and want to take a class in it starting 082018
so hope mhb can help me get a head start

text pdf is on pg15 #15 and #19
http://text:http://abstract.ups.edu/download/aata-20150812.pdf

Hi karush,

For 15., consider the following definitions:

\(A\cap B = \{x\mid x\in A\wedge x\in B\}\)

\(A\setminus B = \{x\mid x\in A \wedge x\notin B\}\)

It follows that

\(\begin{aligned}A\cap(B\setminus C) &= \{x\mid x\in A\wedge(x\in B \wedge x\notin C)\}\\ &= \{x\mid (x\in A\wedge x\in B)\wedge (x\in A\wedge x\notin C)\}\\ &=\{x\mid (x\in A\cap B)\wedge (x\notin A\cap C)\}\\ &= (A\cap B)\setminus (A\cap C)\end{aligned}\)

You might need to be more formal with your proof, but this should give you enough of an idea as to how to construct a formal proof of this set identity.

For 19., we note that \(f:A\rightarrow B\) and \(g:B\rightarrow C\); Hence \(g\circ f:A\rightarrow C\). To show that \((g\circ f)^{-1}= f^{-1}\circ g^{-1}\), you want to show:
  1. that for any \(c\in C\), \(((g\circ f)\circ(f^{-1}\circ g^{-1}))(c) = c\), and
  2. that for any \(a\in A\), \(((f^{-1}\circ g^{-1})\circ (g\circ f))(a) = a\).
I leave it for you to verify this analytically.

I hope this helps!
 
thanks
much appreciate all that

kinda by myself with this right now class hasn't started yet
gota catch bus now
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top