How do I calculate a planets mass?

  • Thread starter Thread starter Vetmora
  • Start date Start date
  • Tags Tags
    Mass Planets
AI Thread Summary
To calculate the mass of fictional planets, knowing their diameter and distance from their sun is insufficient, as these values alone do not provide enough information without average density. The mass can be derived from the diameter and surface gravity using specific formulas that incorporate the universal gravitational constant. If moons are included in the fictional scenario, their orbital characteristics can help determine the planet's mass. Additionally, orbital resonances should be considered when creating planetary systems. Overall, average density values or mass values must be established for accurate calculations of mass and gravity.
Vetmora
Messages
8
Reaction score
0
Hi all,


I have just joined this forum to see if anyone here can help me out.

First off, I am creating fictional planets that orbit fictional stars.

I have given all of my planets a diameter and a distance from their sun. From this, I have managed to calculate their orbital periods and orbital speeds using Kepler's third law.

So using this criteria is it possible to calculate the mass of the planet?

Also, if possible, I would like to calculate their gravity as well.


Thanks in advance.
 
Astronomy news on Phys.org
No, the diameter and orbital radius do not provide enough information to determine the mass or gravity. Both of these values depend on the average density of the planet. However, knowing the mass and diameter of a planet does determine its surface gravity (or vice versa). Specifically (assuming the planet to be spherical), M=\frac{\pi{}D^3\rho{}}{6}g=\frac{4GM}{D^2} \Rightarrow{}g=\frac{2\pi{}GD\rho{}}{3}.
Where G is the universal gravitational constant, M is the mass of the planet, ρ is its average density, and D is its diameter. So, knowing any two of: mass, diameter, average density, and surface gravity is enough to determine the other two.
 
If you're creating fictional situations, is it possible to create fictional moons? As Isometric said, you can't determine the mass of the planets based off their orbits around the Sun. With moons, however, you can determine the planets mass using the moons orbital characteristics.
 
Ah, I figured it wouldn't be possible.

I suppose it would be possible to create fictional moons. Some of the planets already have moons but I haven't worked out any stats for them other than their diameter.

Thanks for the heads up guys.
 
Keplers law isn't strictly accurate to a true universal simulation. It is predicated on the star being the sun, and the mass in orbit of that star having zero mass.

someone posted in another thread:

formula for acceleration due to gravity
g = GM / (R + h)^2

G is the gravitational constant = 6.67300 * 10-11 m3 kg-1 s-2
M is mass of body
R is radius of body
h is height above the body

If that holds true,

g(sun) + g(planet) - (orbital velocity) = 0
(for a perfectly spherical orbit)

for any planet. Under Keplers law, g(sun) should be equal to orbital velocity, since the orbiting objects are massless.

The problem will persist with moons too, you still have to make up average density values (or mass values) for your planets and moons.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top