Fourier Series of Even Square Wave

sandy.bridge
Messages
797
Reaction score
1

Homework Statement


-0.5\leq{t}\leq{1.5}, T=2
The wave is the attached picture.

I need to determine the Fourier Series of the wave in the picture.

I know that f(t)=a_0+{\sum}_{n=1}^{\infty}a_ncos(n\omega_0t)+{\sum}_{n=1}^{\infty}b_nsin(n\omega_0t)

where a_0=\bar{f}=0 due to being an even function. Furthermore, b_n=0 due to being an even function also.

That leaves,
a_n=\int_{-0.5}^{0.5}cos(n\omega_0t)dt-\int_{0.5}^{1.5}cos(n{\omega}_0t)dt=0-\frac{1}{n\omega_0}(sin(1.5n{\omega}_0t)-sin(0.5n{\omega}_0t))=\frac{1}{n{\omega}_0}(sin(0.5n{\omega}_0t)-sin(1.5n{\omega}_0t))

therefore,
f(t)=\frac{1}{{\omega}_0}\sum_{n=1}^{\infty}cos(n{\omega}_0t)(sin(0.5n{\omega}_0t)-sin(1.5n{\omega}_0t))

Is this suffice as an answer, or am I missing something? My textbook is lacking examples so I just would like to know if I am doing it right. Thanks!
 

Attachments

  • wave.jpg
    wave.jpg
    7.3 KB · Views: 558
Physics news on Phys.org
I also had encountered another equation deeper in the chapter that states
f(t)=A/2+(2A/\pi)\sum_{n=1}^{\infty}\frac{sin((2n-1)\omega{_0}t)}{2n-1}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top