Series Proof Help: Proving |ln 2| & |sin x|

  • Thread starter Thread starter emc92
  • Start date Start date
  • Tags Tags
    Proof Series
emc92
Messages
33
Reaction score
0
(1) Show that |ln 2 - ƩNn=1 ((-1)n-1)(1/n)| ≤ 1/(N+1)
(2) Show that |sin x - ƩNn=0 ((-1)n)/(2n+1)!| ≤ |x|2N+2/(2N+2)!


I really don't know where to start. should I change the sums to series first then work my way through? Please help!
 
Physics news on Phys.org
Those are alternating series. The error bound is just the next element of the series.
 
ohhhhh wow now i see. thanks so much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top