Fourier transform of multivalued functions

AI Thread Summary
The discussion revolves around the challenges of evaluating the Fourier transform of a specific multivalued function with branch points and poles on the imaginary axis. The integrand's complexity arises from its two branch points and simple poles, influenced by the constant "a." The author has attempted to rewrite the integral and apply the convolution theorem, successfully obtaining a finite result using Mathematica. However, discrepancies between the numerical and analytical solutions suggest that there may be an oversight in the evaluation process. Participants are encouraged to share strategies or insights to resolve the integral effectively.
B_line
Messages
1
Reaction score
0
Dear all,

I have recently come across the following Fourier transform (FT):

<br /> <br /> I=\int_{-\infty}^{\infty} dx \, e^{-\imath x t} \frac{(1-x^2)}{(1+x^2)^{3/2} (a^2+x^2)}.<br /> <br />

The integrand contains two branch points on the imaginary axis, plus two poles also residing on the imaginary axis. The two simple poles can either be on or off the branch cuts depending on the value of the constant "a". Admittedly, I am experiencing some problems evaluating the above FT. The integrand admit a finite analytical result (I mean when evaluated without the exponential term), so I believe also its FT should exists. One of the strategies I have tried has been to rewrite the integral as:

<br /> <br /> I=\int_{-\infty}^{\infty} dx \, \frac{e^{-\imath x t}}{(1+x^2)^{1/2}} \frac{(1-x^2)}{(1+x^2) (a^2+x^2)}.<br /> <br />

and use the convolution theorem for the "two" functions. The FT of the inverse square root function is the modified Bessel function of the First kind, while the second one can be easily evaluated since it only contains simple poles. I have performed the convolution using Mathematica, that after some time gave me a finite and nice looking answer. Unfortunately, by confronting the numerical and the analytical solution graphically, the two plots look slightly different, even though they show a similar behaviour... clearly something is missing.

Has everyone came across something similar? Do you have any suggestions on strategies to adopt in order to solve the above integral?

Thank you!
 
Mathematics news on Phys.org
Trust the analytical solution, check the numerical solution.
If you find no clue, explain more here.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top