Do I understand impedance correctly? Can anyone fact check my post?

  • Thread starter Thread starter Vishera
  • Start date Start date
  • Tags Tags
    Impedance
AI Thread Summary
Impedance is expressed as Z = R + Xj, where X determines the phase relationship between current and voltage. If X is positive, the current lags behind the voltage, while a negative X indicates that the current leads the voltage. Purely real loads are resistive, while purely imaginary loads are reactive, and it's possible for loads to be predominantly reactive. Observing phase differences can be done using an oscilloscope, although this requires careful setup to minimize resistive components. Understanding these concepts often involves foundational knowledge of phasors and the assumptions underlying sine wave behavior.
Vishera
Messages
72
Reaction score
1
$$Let\quad \vec { Z } =R+Xj$$
If X>0,then the impedance is lagging (current lags behind voltage).If X<0,then the impedance is leading (current leads voltage or more accurately, voltage lags behind current). If X=0, the current and voltage are in phase and the load is called purely real. If x≠0, the current and voltage are not in phase and the load is called complex.

Some load is purely real if and only if the load is purely resistive.
Some load is purely imaginary if and only if the load is purely reactive.

Questions:
1. Does it make physical sense for a load to be purely imaginary or purely reactive?
2. How do we know that when X>0, current lags behind voltage and not the other way around?
 
Engineering news on Phys.org
Vishera said:
$$Let\quad \vec { Z } =R+Xj$$
If X>0,then the impedance is lagging (current lags behind voltage).If X<0,then the impedance is leading (current leads voltage or more accurately, voltage lags behind current). If X=0, the current and voltage are in phase and the load is called purely real. If x≠0, the current and voltage are not in phase and the load is called complex.

Some load is purely real if and only if the load is purely resistive.
Some load is purely imaginary if and only if the load is purely reactive.

Questions:
1. Does it make physical sense for a load to be purely imaginary or purely reactive?
2. How do we know that when X>0, current lags behind voltage and not the other way around?

I hadn't heard the terms leading/lagging impedance before, but perhaps they are standard terms somewhere. Your statements are basically correct.

The easiest way to see "why" is to look at the differential equations that relate voltage and current for inductors and capacitors:

v(t) = L \frac{di(t)}{dt}

i(t) = C \frac{dv(t)}{dt}

:smile:
 
Vishera said:
$$Let\quad \vec { Z } =R+Xj$$
If X>0,then the impedance is lagging (current lags behind voltage).If X<0,then the impedance is leading (current leads voltage or more accurately, voltage lags behind current). If X=0, the current and voltage are in phase and the load is called purely real. If x≠0, the current and voltage are not in phase and the load is called complex.

Some load is purely real if and only if the load is purely resistive.
Some load is purely imaginary if and only if the load is purely reactive.

Questions:
1. Does it make physical sense for a load to be purely imaginary or purely reactive?
2. How do we know that when X>0, current lags behind voltage and not the other way around?

It is quite possible for a load to be almost entirely reactive, although all loads have at least some resistive components.

You could have an inductor made with very thick wire, or a capacitor with thick metal plates, for example.

You can observe phase differences between voltage and current with an oscilloscope.
Unfortunately, this involves placing a resistor or a current probe in series with the reactive component to measure the current and this introduces a resistive component.
Keeping this small still gives an acceptable result.

You still don't know if the voltage leads the current or the current lags the voltage, but it probably doesn't matter.

An amazing free program is available if you have a PC. It is called LTSpice and you can find it via Google.
It takes a little getting used to, but it can teach you all you want to know about impedance and circuits.
 
vk6kro said:
You can observe phase differences between voltage and current with an oscilloscope.
Unfortunately, this involves placing a resistor or a current probe in series with the reactive component to measure the current and this introduces a resistive component.
Keeping this small still gives an acceptable result.

You still don't know if the voltage leads the current or the current lags the voltage, but it probably doesn't matter.

Actually, it's funny that you mention that. We had a lab where we had to do exactly this. I'm not sure if our oscilloscope was special, but the leading waveform was the waveform that was on the left. So for example:

nUkmLs7.png


the blue waveform is leading.
 
Yes, that is a typical result.

You need to understand that this is what you get after a few cycles of input voltage.

When you first apply power to a capacitor, for example, there can't already be a current flowing in the capacitor, although the leading current graph seems to show that.
It takes a few cycles to settle down to a steady pattern.
 
Vishera said:
2. How do we know that when X>0, current lags behind voltage and not the other way around? ]

In my day it was the duty of the textbook author to take you through the assumptions that led to that result.

Firstly, these equations apply only to sine waves which, although most common, are a mathematical special case.

I was taught to represent the sine wave voltage as a rotating vector called a "phasor", which rotates counterclockwise.
Phasor's tail is at center of a circle, head lies on its diameter.
Zero degrees was defined as horizontal with head pointing right.
Next teacher explained how sine at any angle of rotation is equal to the vertical distance of phasor's head from horizontal diameter of the circle. That's just Pythagoras and 8th grade geometry...
So voltage at any instant = Asin(ωt) where A is amplitude of your voltage
and a positive angle is in the counterclockwise direction

Now - once you have defined your starting point, ie where is zero and what direction does your phasor rotate , all else falls out.

But it is SOOO easy to dismiss those essential first steps as just "textbook boilerplate" and brush over them,
that astute students like yourself ask "How'd we get here? Which way is up? "
Valid questions, both.
Go back and see if your text addresses these humble beginnings.

http://resonanceswavesandfields.blogspot.com/2007/08/phasors.html

rotor2.gif
hope I addressed the right question.

old jim
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top