A A bit of clarification on the domain of a composite function

AI Thread Summary
The discussion clarifies the distinction between the functions f(x) = 1/(1/x) and g(x) = x, highlighting that they are not the same due to differing domains. While f(x) is undefined at x = 0, g(x) is defined for all real numbers, making them different functions overall. Both functions coincide on the domain of real numbers excluding zero, but f(x) has a removable singularity at that point. The conversation also touches on how graphing tools like Desmos can plot points at the origin for f(x), which may simplify the expression but does not change the defined domain. Ultimately, defining the domain and codomain is crucial for determining function identity.
lawsonfurther
Messages
25
Reaction score
0
Recently when I reviewed something about the composite function for my calculus exam, I remembered I had been thinking a question for quite a long time (maybe I was going into a dead end) since I was in high school.

I was thinking whether f(x)=1/(1/x) and g(x)=x are the same function or not.
It seems like f(x) is essentially g(x) but according to some kind of definition:

" The composition of two functions f and g is the function h = f ◦ g defined by h(x) = f(g(x)), for all x in the domain of g such that g(x) is in the domain of f. "

Then if I take p(x)=q(x)=1/x (just to avoid confusion), then the composite function is f(x)=p(q(x)), for all x in the domain of q such that q(x) is in the domain of p(x). While in this case, q(x) or the range of q(x), namely (-∞,0)∪(0,∞), is always in the domain of p(x), and all x in the domain of q is also (-∞,0)∪(0,∞), then should the domain of f(x) be (-∞,0)∪(0,∞)? If so, f(x) and g(x) have different domains (the domain of g(x) is R obviously). Does it mean f(x) and g(x) are different functions?
(Of course I could have used just p(x)=1/x and said f(x)=p(p(x)), but it's just for avoiding some confusion.
Hope you will get that idea.)
 
Mathematics news on Phys.org
You are right, ##f## and ##g## are different functions, simply because ##f(0)## isn't defined, whereas ##g(0)## is.
They both coincide on ##\mathbb{R}-\{0\}##, and in case we would only consider functions on the multiplicative part of the reals, that is ##\mathbb{R}^*=\mathbb{R}-\{0\}## they are indeed equal. But this is a bit artificial in this situation. On the entire real number line, we have two straights through the origin, but ##f(x)## has a gap at ##x=0##. It is called a removable singularity, because we can insert just one point and get ##g(x)##.
 
To fully define a function you have to define its domain and codomain. If you say the domain of g is the whole set of real numbers then f and g will be different. But that is not the only choice. You can define both f and g only for positive real x for example, and make them identical.
 
Okay. Thanks a lot. That really helps.
 
But why can I still plot the point at origin intersecting with f(x) in Desmos (a graphing calculator)?
 
It might simplify the expression before determining its possible domain.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
11
Views
2K
Replies
8
Views
5K
Replies
11
Views
2K
Replies
2
Views
1K
Replies
3
Views
1K
Back
Top