A bus, a pendulum and acceleration

AI Thread Summary
A bus is descending a 20-degree slope and brakes with constant deceleration, while a pendulum moves 10 degrees from vertical. The x-component of the bus's acceleration was initially calculated as 1.73 m/s², but the expected answer is 2.0 m/s². The discussion emphasizes the need to analyze force components parallel and perpendicular to the incline to accurately determine total acceleration. The user has attempted to rework force equations involving tension but continues to arrive at a similar acceleration value. Clarification is sought regarding the angle the string makes with respect to the slope to resolve the discrepancy.
jemerlia
Messages
28
Reaction score
0

Homework Statement



A bus is descending a uniform 20 degree slope. It brakes with constant deceleration. A pendulum moves 10 degrees away from the vertical to the downward side. Find the acceleration of the bus.

....|
.../|
... ../.|
.../10|
.../...|.../
...O...|.../
....|/
.../.|
.../...|
.../...|
../...20...|vertical
/_______ |___________horizontal_____





Homework Equations



F=ma

The Attempt at a Solution




I can deduce the x-component of the acceleration:

ax = g tan 10 = 1.73ms^-2

The expected answer is 2.0ms^-2. I can't see how to relate the twenty degree slope to the x component of the acceleration to calculate the total acceleration.

Any help or advice gratefully received...
 
Physics news on Phys.org
jemerlia said:
I can deduce the x-component of the acceleration:

ax = g tan 10 = 1.73ms^-2
Careful: The acceleration is not horizontal.

Do this: Analyze force components parallel and perpendicular to the incline surface.
 
Thanks - point taken - I reworked the expressions for Fy and Fx in terms of string tension:

sumFy = FTcos 10 - mg cos 20

sumFx=FT sin10 - mg sin 20

m x ax = mg cos 20. tan 10 -mg sin 20

ax =g(cos20.tan10 -sin 20)

N.B. ax is x acceleration with xy co-ordinates of the slope!

Sadly the result is still 1.72ms^-2

Perhaps there is an error with FT cos10 and FT sin 10 in the two sum of forces expressions... and perhaps elsewhere...

Help, advice gratefully received...
 
jemerlia said:
Thanks - point taken - I reworked the expressions for Fy and Fx in terms of string tension:

sumFy = FTcos 10 - mg cos 20

sumFx=FT sin10 - mg sin 20
What angle does the string make with respect to the slope?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top