A conducting shell kept in a uniform electric field

  • #1
Titan97
Gold Member
451
18

Homework Statement


Find the force that tries to rip apart a conducting shell into two halves about its equator when kept in a uniform electric field of magnitude ##E##.
Untitled.png


Homework Equations


Gauss Law: $$\nabla\cdot\vec{E}=\frac{\rho}{\epsilon_0}$$
I think Laplace equation might also be helpful.

The Attempt at a Solution


Firstly, why should the two halves repel each other :oldconfused:?

Can you just help me to figure out that part? Then I will attempt the question once more.
 

Answers and Replies

  • #2
177
11
I think there will be an induced polarisation on the shell, won't it?
If the field lines go from left to right, the electric field should attract positive charges to the right side of the shell and negative ones to the left. In this case, the two sides repell eachother. Or am I wrong?
 
  • Like
Likes Titan97
  • #3
963
213
Find the force that tries to rip apart a conducting shell into two halves about its equator when kept in a uniform electric field of magnitude EEE.
If you wish to calculate the force that tries to rip apart the hemispheres- it means that the two halves are being attracyed to each other,
why?
the electric field must have done some displacement of the charges on the conducting shell and if the hemisphers have got charges then it must have some potential developed at the surface..
let us try to model the system by imaginary cutting the spherical conductor by a plane.
 
  • Like
Likes Titan97
  • #4
Titan97
Gold Member
451
18
@drvrm rip apart means to repel. If the two halves attract each other, they will stick to each other.
 
  • #5
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
35,574
6,448
I think there will be an induced polarisation on the shell, won't it?
If the field lines go from left to right, the electric field should attract positive charges to the right side of the shell and negative ones to the left. In this case, the two sides repell eachother. Or am I wrong?
You are right about the induced charges being positive one side and negative the other, but I believe opposite charges attract. What other reason might there be a force pulling them apart?
 
  • Like
Likes Alettix and Titan97
  • #6
Titan97
Gold Member
451
18
  • #7
963
213
@drvrm rip apart means to repel. If the two halves attract each other, they will stick to each other.
actually there can be two types of force - the external electric field acting on the hemispherical shells as well as due tp the effective displacement of the charges leading to a dipole field equivalent to the two hemispherical charge distribution and the net force can be repulsive .
 
  • Like
Likes Titan97
  • #8
Titan97
Gold Member
451
18
@drvrm can you explain in simple language?
 
  • #9
963
213
@drvrm can you explain in simple language?
the external electric field will contribute to a potential at any point outside the spherical conductor say at P(r. theta) ; however the displacement of charges of the conductor (induced charges) can be looked as equivalent to a dipole placed at the centre of the conductor and its potential contribution at P can be estimated. these potentials can have different nature and
the electric field intensity due to these two may have a net repulsion between the hemispheres
 
  • Like
Likes Titan97
  • #10
Titan97
Gold Member
451
18
:oldconfused::oldfrown::oldcry: ok. I just saw a problem in purcell and morin's asking me to prove that it forms a dipole. I am gonna go through it.
 
  • #11
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
35,574
6,448
:oldconfused::oldfrown::oldcry: ok. I just saw a problem in purcell and morin's asking me to prove that it forms a dipole. I am gonna go through it.
I'm not so sure the dipole is relevant. The dipole results from the charges on both hemispheres, but the force on one hemisphere does not involve the field its own charges generate. It comes from its own charge in relation to the fields from the other hemisphere and the background field.
However, I do not yet have any ideas on how you would quantify it.
 
  • Like
Likes Titan97
  • #12
Titan97
Gold Member
451
18
@haruspex what force is responsible for repulsion?
 
  • #13
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
35,574
6,448
@haruspex what force is responsible for repulsion?
Don't think of it specifically as repulsion. Just think what forces act on each hemisphere.
 
  • Like
Likes Titan97
  • #15
Titan97
Gold Member
451
18
Why are they letting ##Q\to\infty##?
 
  • #16
963
213
Why are they letting Q→∞Q→∞Q\to\infty?
i think they are trying to portray a field as Q tends to infinity R also tends to infinity giving Q/R.^2.. finite actually this field is responsible for induced charges in conductor later they will relate it to field intensity E(0)

as finally they have to calculate E-field on the surface of the conductor and derive the charge density then can finally calculate force between two hemispheres.
 
  • Like
Likes Titan97
  • #18
rude man
Homework Helper
Insights Author
Gold Member
7,871
793
As posts 16 and 17 allude, the problem can be set up as a dipole of charge -q and +q centered at the center of the shell and collinear with the external E field.

The external E field can in turn be modeled by two charges Q and -Q placed distances -d and +d away from the shell's center. The dipole charges are then immediately determined in magnitude, polarity and position inside the shell.

The ensuing picture is that of 4 charges: the +Q charge pulls harder on the -q charge than it pushes on the +q charge. Similarly, the -Q charge pulls more heavily on the +q charge than it repels the -q charge. The net effect is to exert a force repelling the two shell halves from each other.
 
  • Like
Likes Titan97 and drvrm
  • #19
Titan97
Gold Member
451
18
@haruspex due to the electric field, the charge distribution will be like this right?
Untitled.png

red represents negative charge and blue represents positive charge.
Hence the left part tries to move left and the right part tries to move right. (repulsion)

The field inside the shell will be cancelled out the external field (clarification needed).

I can find the surface charge density by using the solution of Laplace equation in spherical coordinates.

If this method is correct, I will reply the surface charge density appearing on the shell as a function of ##\theta##.
 
  • #21
rude man
Homework Helper
Insights Author
Gold Member
7,871
793
@haruspex due to the electric field, the charge distribution will be like this right?
View attachment 99214
red represents negative charge and blue represents positive charge.
Hence the left part tries to move left and the right part tries to move right. (repulsion)
Yes this is in line with my post
The field inside the shell will be cancelled out the external field (clarification needed).

Yes, the two fields cancel each other inside the shell. We know there is zero E field in the metallic shell itself and since there is no surface charge on the inside of the shell the change in E must be zero as we enter the inside of the shell.
I can find the surface charge density by using the solution of Laplace equation in spherical coordinates.
If this method is correct, I will reply the surface charge density appearing on the shell as a function of ##\theta##.
This sounds difficult. And even if you succeed in finding the surface charge density, which BTW will be a function of spherical coordinates θ and φ, not just θ, how will you then determine the forces pulling the two halves apart? I think the image method is a lot easier ...
 
  • Like
Likes Titan97
  • #22
Titan97
Gold Member
451
18
Once I know the charge on the shell, then I will find force using $$F=\int Edq$$ I will post my attempt soon. Even if method of images is easier, I want to solve this problem in more than one way.
 
  • #23
963
213
The field inside the shell will be cancelled out the external field (clarification needed).

I can find the surface charge density by using the solution of Laplace equation in spherical coordinates.

If this method is correct, I will reply the surface charge density appearing on the shell as a function of θθ\theta.
if you have surface charge density and the electric field at the surface ,one can calculate the force ...you may try ans see.
 
  • Like
Likes Titan97
  • #24
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
35,574
6,448
Hence the left part tries to move left and the right part tries to move right. (repulsion)
Your use of the word repulsion suggests to me that you think the positive charge on one half repels the negative charge on the other. As I reminded Alettix, opposite charges attract. I know @rude man said yes to this, but I don't think he could have realised exactly what you were implying.
Your diagram is missing the external field. What is the affect of that on each half?
 
  • Like
Likes Titan97
  • #25
rude man
Homework Helper
Insights Author
Gold Member
7,871
793
Your use of the word repulsion suggests to me that you think the positive charge on one half repels the negative charge on the other. As I reminded Alettix, opposite charges attract. I know @rude man said yes to this, but I don't think he could have realised exactly what you were implying.
Your diagram is missing the external field. What is the affect of that on each half?
In setting up the four charges I described previously, some of the forces are indeed attractive as Alettix described, but they get overshadowed by the greater repulsive forces. It's a matter of what direction the net forces effect.
 
  • Like
Likes Titan97

Related Threads on A conducting shell kept in a uniform electric field

Replies
3
Views
2K
  • Last Post
Replies
0
Views
1K
Replies
5
Views
2K
Replies
23
Views
7K
Replies
1
Views
916
Replies
2
Views
795
Replies
5
Views
1K
Replies
2
Views
6K
Replies
7
Views
6K
Replies
5
Views
2K
Top