Are These Probability Problems Solvable with Bayes' Theorem?

  • Thread starter Thread starter Sportsman4920
  • Start date Start date
  • Tags Tags
    Couple Probability
AI Thread Summary
The discussion focuses on solving probability problems using Bayes' Theorem. The first problem involves two urns with different distributions of white and red balls, and participants are trying to calculate the probability of selecting the first urn after drawing two white balls. The second problem involves jelly beans transferred between a box and a bag, where the goal is to determine the probability that a transferred jelly bean was green given that a green jelly bean was drawn from the bag. Participants express confusion over applying Bayes' Theorem correctly and share their attempts at using probability trees and equations, seeking clarification on their calculations. The conversation highlights the challenges of understanding conditional probabilities and the application of Bayes' Theorem in these scenarios.
Sportsman4920
Messages
16
Reaction score
0
1. An urn contains 2 white balls and 8 red balls. A second urn contains 8 white balls and 2 red balls. An urn is selected, and the probability of selecting the first urn is 0.4. A ball is drawn from the selected urn and replaced. Then another ball is drawn and replaced from the same urn. If both balls are white, what are the following probabilities? (Round your answers to three decimal places.)

(a) the probability that the urn selected was the first one

I tried multiplying the probability of the first urn .4 x the probability of a white ball .2 together, then squaring it to get the probability of it happening twice. Clearly not correct though. Do I have to use bayes theorem?

(b) the probability that the urn selected was the second one
This I know is 1-the answer to a


2. A box has 4 blue and 2 green jelly beans. A bag has 8 blue and 6 green jelly beans. A jelly bean is selected at random from the box and placed in the bag. Then a jelly bean is selected at random from the bag. If a green jelly bean is selected from the bag, what is the probability that the transferred jelly bean was green? (Round your answer to three decimal places.)

I figured out the probability of picking a green jelly bean from the bag, and the probability of picking the other options from the box. And I know we are supposed to find the probability of picking a green from the box given picking a green from the bag. However I can not get it to work in the equations that I have.
 
Physics news on Phys.org
you can use Baye's theorem..I just used a probability tree. But, it doesn't change anything. The probability of picking the first urn is .4, as stated. Kind of like the Monty Hall problem, the probability doesn't change

Second, one using probability tree, brute force, probability is 7/19. Sorry can't help with equations.
 
Thanks for the help. I tried using bayes theorem for the first problem by doing the probability of the first earn given the ball is white. So 1/W. Which is .4x.2/(.4x.2 + .6x.8) and got .1429. Then multiplied that by .4x.2 because knowing it is the same earn and the ball is white, the probability of picking another white ball is .08. But this was not correct. Where did I go wrong? -Thanks
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top