A A discrete version of the normal distribution

Click For Summary
The discussion focuses on the equality of integrals and sums for a discrete version of the normal distribution, specifically addressing the integrals of the normal distribution function and their corresponding sums. It highlights that the integral and the first two moments of the normal distribution yield equal results, which is a recognized property due to the normal distribution being the limit of a binomial distribution as the sample size approaches infinity. The conversation references a previous thread for additional context and provides a link to a resource explaining this relationship. The surprising aspect of the equality between the integral and the infinite sum is acknowledged as a well-known result in probability theory. Understanding this connection is crucial for applying discrete approximations of continuous distributions.
Ad VanderVen
Messages
169
Reaction score
13
TL;DR
How can the result of an integral of a normal distribution be the same as the result of a sum?
I have the following function for the normal distribution:
$$\displaystyle f \left(x \right) = \frac{1}{2}~\frac{\sqrt{2}~e^{-\frac{1}{2}~\frac{\left(x -\mu \right)^{2}}{\sigma ^{2}}}}{\sigma ~\sqrt{\pi }}$$
How can the following integrals be equal to their sums?
$$\displaystyle \int_{-\infty }^{\infty }\!1/2\,{\frac { \sqrt{2}}{\sigma\, \sqrt{\pi }}{{\rm e}^{-1/2\,{\frac { \left( x-\mu \right) ^{2}}{{\sigma}^{2}}}}}}\,{\rm d}x=\sum _{x=-\infty }^{\infty }1/2\,{\frac { \sqrt{2}}{\sigma\, \sqrt{\pi }}{{\rm e}^{-1/2\,{\frac { \left( x-\mu \right) ^{2}}{{\sigma}^{2}}}}}},$$
$$\displaystyle \int_{-\infty }^{\infty }\!1/2\,{\frac {x \sqrt{2}}{\sigma\, \sqrt{\pi }}{{\rm e}^{-1/2\,{\frac { \left( x-\mu \right) ^{2}}{{\sigma}^{2}}}}}}\,{\rm d}x=\sum _{x=-\infty }^{\infty }1/2\,{\frac {x \sqrt{2}}{\sigma\, \sqrt{\pi }}{{\rm e}^{-1/2\,{\frac { \left( x-\mu \right) ^{2}}{{\sigma}^{2}}}}}}$$
and
$$\displaystyle \int_{-\infty }^{\infty }\!1/2\,{\frac { \left( x-\mu \right) ^{2} \sqrt{2}
}{\sigma\, \sqrt{\pi }}{{\rm e}^{-1/2\,{\frac { \left( x-\mu \right) ^{2}}{{\sigma}^{2}}}}}}\,{\rm d}x=\sum _{x=-\infty }^{\infty }1/2\,{\frac { \left( x-\mu \right) ^{2} \sqrt{2}}{\sigma\, \sqrt{\pi }
}{{\rm e}^{-1/2\,{\frac { \left( x-\mu \right) ^{2}}{{\sigma}^{2}}}}}}$$
 
Last edited:
Physics news on Phys.org
Looks like the integral and first two moments of a normal distribution.