Fourier Transform of Integral of Product of Functions

WarnK
Messages
30
Reaction score
0
Hi!

I want to find the Fourier transform of

\int_{-\infty}^t f(s-t)g(s) ds.

The FT

\int_{-\infty}^t h(s) ds \rightarrow H(\omega)/i\omega + \pi H(0) \delta(\omega)

is found in lots of textbooks. So if I let h(s) = f(s-t)g(s), I need to find the FT of h(s)

H(\omega) = \int_{-\infty}^{\infty} h(s) \frac{e^{-i\omega s}}{\sqrt(2\pi)}ds = \int_{-\infty}^{\infty} f(s-t)g(s) \frac{e^{-i\omega s}}{\sqrt(2\pi)} ds.

But there I'm stumped, what can I do? I can do FT of products like f(s)g(s), but this isn't exactly like that.
 
Last edited:
Physics news on Phys.org
Did you try the Fourier transform of a convolution?
 
Defennder said:
Did you try the Fourier transform of a convolution?

yeah, but the OP needs to reverse the "time" argument in f(.).

WarnK, where did you get that icky 1/\sqrt{2 \pi} definition for the F.T.?

i really recommend this definition:

X(f) = \int_{-\infty}^{+\infty} x(t) e^{-i 2 \pi f t} dt

with inverse

x(t) = \int_{-\infty}^{+\infty} X(f) e^{i 2 \pi f t} df

while remembering that \omega \equiv 2 \pi f, and when comparing to the double-sided Laplace Transform to substitute i \omega \leftarrow s.

it will make your life much easier.
 
I'm rather new to this myself. So the answer differs by a minus sign?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top