I would possibly agree that Velleman takes a very pragmatic, and seemingly mechanical approach. But it just gives you a way to think about getting started, and how to understand the form of proofs. But seriously..."How to Solve it"? As I recall, that book has nearly nothing relating to the form of proofs. The biggest hurdle isn't in understanding what makes something true or in seeing why something might be true, it's in actually putting it on paper in a way that's rigorous, precise, and clean. People that have already gone passed any hurdle always tend to look back and dismiss the elementary and maybe even slightly dumbed down approaches that got them over that hurdle in the first place. Velleman's book isn't a book one would want to reread many times, as Polya's "might" be, but it's beyond a good book for the original poster who is just looking for a way to get started.
On a related note..."How to Prove it" using truth tables to prove theorems? That, it does not. I'm wondering if we're referring to different books or if you, matt grime, perhaps only glanced at it? The book begins with sentential logic, and truth tables are for the purposes of understanding logical connectors, not a way to think about proofs. It never once mentions using truth tables as devices in actually writing real proofs.
Perhaps I misunderstood, but didn't you, mathwonk, say that you read that the book teaches "two column" proofs and that you instantly "jettisoned" it? Does this imply that you haven't read it? If you haven't, I just want to point out that he uses this "two column" proof method as a way to reformulate equivalent versions of a problem, which in your next paragraph you stated was a good thing.
Let me give a little description of what this "two column" thing is all about. First of all, it's nothing more than a way to organize thoughts, and the only times it's mechanical are when things are trivial. On the left side you put your assumptions, and on the right side you put what you want to prove. Under these you update your givens and your goals using tautologies and/or whatever insights you may have. You do this until you can see how your assumptions lead to your goal. This is something we all do in our heads, and this just gives us a way to keep track of what we're doing. This isn't something he insists that we use forever, it's just an excellent way to visualize progress in your proof, since the average mind can't comprehend a complex proof at one time. You can put your updates into english once you are finished and what you end up with is often a nice proof.