Q-reeus
- 1,115
- 3
While the example given in #59 obeyed BE statistics (in particular a BE condensate), not FD stats as per becox's rubbed diamond. the issue is whether a commonly shared wavefunction changes instantly in any physically real manner. Suppose the exciting coil at A received a step current; then the superconducting TL is obliged to *finally* exhibit a reverse current that exactly cancels any magnetic flux linkage from the coil. Although all Cooper pairs will then continue to occupy the ground state following magnetic linkage with the coil at end A, the wavefunction state is different before vs after - a magnetically linked SQUID detector at B will indicate a change in phase etc. Point was the system as a whole surely settles into the new configuration no differently than a notionally classically perfectly conducting TL - there is a continuous train of reflected pulses that typically decays quasi-exponentially with time. I see no possibility of any instantaneous linkage of any kind between ends A and B - despite the shared single wavefunction.
In #60 Ken G argues that the answer is to see the universe as a kind of "Bohmian whole" (my interpretation!) where electrons have no independent existence - yet the final upshot being yes, there is instantaneous linkage but no instantaneous signalling results. Cannot see that thinking in terms of state occupancy rather than electrons occupying states changes the issue materially - we are still left with an untestable hypothesis of instantaneous linkage (akhmeteli's comments in #44 and #57 are relevant to the notion of 'instantaneous'). In what way exactly is the scenario in #59 and elaborated above an invalid counterexample? Seems to me that change to that single supercurrent wavefunction has to be negotiated among the constituent Cooper pairs over an extended time interval, in accordance with SR causality.
In #60 Ken G argues that the answer is to see the universe as a kind of "Bohmian whole" (my interpretation!) where electrons have no independent existence - yet the final upshot being yes, there is instantaneous linkage but no instantaneous signalling results. Cannot see that thinking in terms of state occupancy rather than electrons occupying states changes the issue materially - we are still left with an untestable hypothesis of instantaneous linkage (akhmeteli's comments in #44 and #57 are relevant to the notion of 'instantaneous'). In what way exactly is the scenario in #59 and elaborated above an invalid counterexample? Seems to me that change to that single supercurrent wavefunction has to be negotiated among the constituent Cooper pairs over an extended time interval, in accordance with SR causality.
