MHB A possible graph for this function?

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Function Graph
eleventhxhour
Messages
73
Reaction score
0
I'm not sure how to draw the graph for this question. Could someone please point me in the right direction? I'm also not really sure how you'd find the parent function for the situation. Here's the question:

1) Each of the following situations involve a parent function whose graph has been translated. Draw a possible graph that fits the situation.
a) The doman is (x=R), the interval of increase is (-∞, ∞) and the range is (f(x) = R | f(x) > -3).

Thanks!
 
Mathematics news on Phys.org
What kind of function is bounded at the left end (as $x\to-\infty$) by some finite value, but is unbounded at the right end and always increases? Could it be a polynomial of some type? A trigonometric, logarithmic or exponential function?
 
MarkFL said:
What kind of function is bounded at the left end (as $x\to-\infty$) by some finite value, but is unbounded at the right end and always increases? Could it be a polynomial of some type? A trigonometric, logarithmic or exponential function?

Um I'm not sure. An exponential function?
 
eleventhxhour said:
Um I'm not sure. An exponential function?

Yes, an exponential function of the form:

$$f(x)=ab^x+c$$ where $$a\ne0$$ and $$1<b$$

will be strictly increasing, and we will find:

$$\lim_{x\to-\infty}f(x)=c$$

So, can you pick appropriate values for $a,b,c$ such that the requirements of the problem are satisfied?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
6
Views
2K
Replies
4
Views
3K
Replies
9
Views
4K
Replies
4
Views
4K
Replies
1
Views
1K
Replies
13
Views
2K
Back
Top