eljose said:
if they discovered the proof long ago...why did they not publish it?
Precisely for the reasons I said above: It's not a proof! People have made the observation you think you are making even more concretely but they all acknowledge that it is not a proof of anything. So what we are saying is that even if you turn this into a coherent statement, it is something that others have already said.
eljose said:
...in a post above i have proof that the potential exist
You don't need to prove that there is a potential that relates to the properties of the zeta function. That has already been done. It's just that it doesn't have anything to do with a proof.
eljose said:
and even calculated it to first order in perturbation theory depending on \delta{E(n)} and the E_{n} and E^0_{n} are known even more if we call Z the inverse of the function \zeta(s) then we could write: E_{n}=i(1/2-Z(0)) (i have oly inverted the function, and i have used simple integral equation theory to prove the existence of the potential...
As soon as you say you have calculated something to first order, or used the WKB approximation, or anything like that we immediately KNOW that those statements can't be part of a proof.
People can already calculate all the zeros of the zeta function. But it will take an infinite amount of time, just as your approximate processes might be able to do the same calculation if you do it properly, but it still has nothing to do with a proof because an infinite process will never be considered a proof seeing as you can't complete it.
eljose said:
The problem with Matt (as happen with most of math teachers) is that they have assumed certain conceptions in math and if you are out of these,you are nothing,
Why exactly are you interested in trying to show anything to mathematicians if you reject mathematics? Mathematics defines its own processes very carefully so you can either accept those processes and do mathematics, or you can reject those processes and accept that you are not doing mathematics. (In that case, though, why should mathematicians listen to you when you incorrectly claim to be doing mathematics?)
eljose said:
i don,t know what argument will now matt grime have to say my maths are wrong,but is only an "approach to the potential" (is would be only correct to first order in perturbation theory, the whole serie of values of energy is perhaps even divergent) and the WKB is also an approach,to say that we can choose some functions that are on L^{2}(R) function space...\psi=Asen(S(x)/\hbar) for example.
another question as we are dealing with rigour an other things...can anyone of you brilliant,smart intelligent mathematician to prove the existence of infinitesimals,i,ll put even more easier,write (with numerical value) an infinitesimal...
I addressed the problem of using approximations above. As for the issue of infinitesimals, which is completely off-topic for this discussion, infinitesimals are not something whose existence should be proven - they are something that is defined. And if you knew that you would also know that it is impossible to write a numerical value for one because, by definition, they do not admit numerical expansions.
People have been pretty patient with you and tried to help you understand why what you are doing is not proof but you seem to refuse to even learn what "proof" means in mathematics and, instead, complain that mathematicians won't listen to you. Why should anybody listen to you tell them how to do their work when you have demonstrated that you don't understand what their work is?
Given that people have been trying to help you, don't you think it is pretty rude of you to refuse to listen or learn?