A question about mixed partial derivative

AI Thread Summary
The discussion centers on the relationship between the differentiability of a function f[x,y]: R^2 -> R and the equality of mixed partial derivatives, specifically fxy = fyx. It is established that for the equality of cross partials to hold, the function must be twice differentiable in both variables, and the continuity of the second derivatives at the point of interest is necessary. The participants agree that unless dealing with a pathological function, the equality of cross partials is typically valid under these conditions. This understanding clarifies the connection between differentiability and the equality of mixed partial derivatives.
vacuum
Messages
75
Reaction score
0
Let there be a function f[x,y]: RxR->R

Is there any connection between the differentiability
(I am not sure that this is the right English term - I meant f[x,y]= a*dx+b*dy +something of smaller order)
and the equality fxy=fyx, where fxy means the derivative of f[x,y] first by y, and than by x ?
 
Mathematics news on Phys.org
Originally posted by vacuum
Let there be a function f[x,y]: RxR->R

Is there any connection between the differentiability
(I am not sure that this is the right English term - I meant f[x,y]= a*dx+b*dy +something of smaller order)
and the equality fxy=fyx, where fxy means the derivative of f[x,y] first by y, and than by x ?

The idicated cross partials have to exist of course. Usually you wouls ensure that by requiring that f be twice differentiable in both variables.
 
Thanks for the reply.

Does that mean that double differentiability implies the fxy=fyx equality?(Or reverse plus continuity of other partial derivatives?)
 
Originally posted by vacuum
Thanks for the reply.

I think you have to have continuity of the second derivitives at any point where you want to show the cross partials are equal. Since this is just a feature of the cross partials, i.e. it's always true if you have the above conditions, you can't use it to prove the conditions exist.

Pretty generally, unless you have a fiendishly pathological function f, you can always take the equality of the cross partials for true.
 
Thanks again!
This really clarifies some things...
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top