Ah, okay, I think I understand your question now. Essentially, you are asking how do molecules and atoms form life, right? As pythagorean said, the process by which a collection of chemicals can become a self-replicating, evolving, living system is called abiogenesis. How abiogenesis occurred on Earth is not well understood, and although there are many theories about what steps may have been involved and how those steps could have happened, there is no general conensus around the issue yet. Here is a nice, simplified description of what could have happened: http://evolution.berkeley.edu/evosite/evo101/IIE2bDetailsoforigin.shtml
Now, in my previous post, when I said that natural selection operated on the level of population of organisms, I was discussing that in the context of modern day natural selection. In the early prebiotic Earth, before life had emerged, it is likely that natural selection did act on molecules. The basic rerequisites for natural selection to occur are:
1) A self-replicating system that,
2) has traits that can be passed on to its descendents, and
3) lives in an environment where certain traits allow some individuals to reproduce more than others
So, in order for a molecule to undergo natural selection, it must be able to replicate itself and its ability to replicate must be heritable. Researchers have indeed been able to engineer molecules with these properties and, when placed in the right environment, they undergo natural selection in the lab:
Joyce and Lincoln sought to evolve their molecule by natural selection. They did this by mutating sequences of the RNA building blocks, so that 288 possible ribozymes could be built by mixing and matching different pairs of shorter RNAs.
What came out bore an eerie resemblance to Darwin's theory of natural selection: a few sequences proved winners, most losers. The victors emerged because they could replicate fastest while surrounded by competition, Joyce says.
(
http://www.newscientist.com/article/dn16382-artificial-molecule-evolves-in-the-lab.html#.UyXF3YV7Q9s)
See also Lincoln and Joyce. 2009. Self-Sustained Replication of an RNA Enzyme.
Science 323: 1229.
doi:10.1126/science.1167856.
For more on efforts to build living systems in the laboratory see
http://www.nytimes.com/2011/07/28/science/28life.html
Now, are these self-replicating RNA molecules alive? That very much depends on how one defines life (usually, the ability to metabolize – to harvest energy and building blocks from the environment – is considered a halmark of living systems and these RNA enzymes lack this ability). But this brings up a broader question: what makes "living" molecules different from "non-living" molecules.
Here, pythagorean again has stated the answer. Life is a property that comes about not from the molecules themselves, but from the interactions between the molecules – it is an emergent property of a collection of molecules. If you are mathematically inclined, here's one way to think about it. Consider a system of coupled non-linear differential equations. These differential equations might describe different interactions between molecules in a living system. Now, depending on the parameters of that set of differential equations, the system will behave differently. For some sets of parameters, the system will tend toward attractor points whereas for other parameters, the system will diverge away from repellor points. The system might enter a limit cycle and display oscillatory behavior for some parameter, while other parameters will lead to a chaotic system. These behaviors all depend on the initial values of the parameters of the system, the point in phase space at which these systems begin. Life, in this somewhat simplified view, is the region of phase space that allows the system to exist as a self-replicating system that can extract energy and building blocks from its surroundings. All you need to do is to find the right collection of molecules (i.e. the right set of differential equations) and set them up at the correct point in phase space, and you can create a living system.