zzzhhh
- 39
- 1
If x_n\geq 0, y_n\geq 0 and \lim \limits_{n \to \infty }x_n exists, we have \limsup\limits_{n\to\infty}(x_n\cdot y_n)=(\lim\limits_{n\to\infty}x_n)\cdot(\limsup\limits_{n\to\infty}y_n). But if \lim\limits_{n\to\infty}x_n<0, do we have analog equation(I guess \limsup\limits_{n\to\infty}(x_n\cdot y_n)=(\lim\limits_{n\to\infty}x_n)\cdot(\liminf\limits_{n\to\infty }y_n))? and what change should be made to conditions to achieve the analog equation? Formal source of reference such as textbooks or webpages is recommended. Thanks!