shakgoku
- 28
- 0
1. A gas molecules of mass m are in thermodynamic equilibrium at a temperature T.
If v_{x},v_{y},v_{z} are the components of velocity v, then the mean value of (v_{x}-{\alpha} {v_{y}}+{\beta} {v_{z}})^2 is:
a.(1+\alpha^2+\beta^2)\frac{k_{b}T}{m}
b.(1-\alpha^2+\beta^2)\frac{k_{b}T}{m}
c. (\beta^2-\alpha^2)\frac{k_{b}T}{m}
d.(\alpha^2+\beta^2)\frac{k_{b}T}{m}
[v_{rms} \sqrt{\frac{3k_{b}T}{m}}
K.E = \frac{3k_{b}T}{2}
If v_{x},v_{y},v_{z} are the components of velocity v, then the mean value of (v_{x}-{\alpha} {v_{y}}+{\beta} {v_{z}})^2 is:
a.(1+\alpha^2+\beta^2)\frac{k_{b}T}{m}
b.(1-\alpha^2+\beta^2)\frac{k_{b}T}{m}
c. (\beta^2-\alpha^2)\frac{k_{b}T}{m}
d.(\alpha^2+\beta^2)\frac{k_{b}T}{m}
Homework Equations
:[/B][v_{rms} \sqrt{\frac{3k_{b}T}{m}}
K.E = \frac{3k_{b}T}{2}
Last edited: