- 13,388
- 4,035
Let's say we have a self-adjoint, densly defined closed linear operator acting on a separable Hilbert space H
A:D_{A}\rightarrow H
Let \lambda be an eigenvalue of A and let
\Delta_{A}\left(\lambda\right) = \{\left(A-\lambda \hat{1}_{H}\right)f, \ f\in D_{A}\}
How do i prove that
D_{A}\perp \Delta_{A}(\lambda) \Leftrightarrow \bar{\Delta_{A}(\lambda)} \neq H.
Daniel.
A:D_{A}\rightarrow H
Let \lambda be an eigenvalue of A and let
\Delta_{A}\left(\lambda\right) = \{\left(A-\lambda \hat{1}_{H}\right)f, \ f\in D_{A}\}
How do i prove that
D_{A}\perp \Delta_{A}(\lambda) \Leftrightarrow \bar{\Delta_{A}(\lambda)} \neq H.
Daniel.