A question regarding tensor product of hilbert spaces

azztech77
Messages
3
Reaction score
0
So I've been reading Cohen-Tannoudji's "Quantum mechanics vol 1" and have understood the part that proves that the hilbert space of a 3-dimensional particle can be described/decomposed as a tensor product of hilbert spaces using position vectors (or analogously momentum vectors) in the x, y and z directions. This is really cool and neat. My question is: I know that x and p basis vectors cannot be mixed to form a complete system of orthogonal vectors making up a basis (this follows from the fact that they are the eigenvectors of the non-commuting observables/hermitian operators X and P) for the hilbert space. However, and this is just a curiosity - is there some other loosely ANALOGOUS way to write the hilbert space as some sort of (perhaps elaborate) tensorial product decomposition of x and p basis vectors to fully describe all the states? I'm guessing that if this were possible than the tensors would be anti-symmetric since the standard canonical relations apply. Just a thought - anyone know of anything like this?
 
Physics news on Phys.org
Not exactly what you're asking, but -- in classical mechanics we do often use phase space, in which the axes are labeled by both x's and p's. There's a formulation of quantum mechanics which maps Hermitian operators in the Hilbert space into certain functions on phase space. This is called the Wigner-Weyl formalism. A good discussion of it can be found here.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top