A quick Question on Joint Uniform Distribution

loveinla
Messages
11
Reaction score
0
Hi, I have a quick question.

If both X and Y are uniformly distributed on the unit interval [0, 1]. Can we prove that the joint distribution of (X, Y) is uniform on the unit square [0, 1]×[0, 1]? Do we need any condition to ensure the result, such as Independence between X and Y?

Thanks.
 
Physics news on Phys.org
loveinla said:
Hi, I have a quick question.

If both X and Y are uniformly distributed on the unit interval [0, 1]. Can we prove that the joint distribution of (X, Y) is uniform on the unit square [0, 1]×[0, 1]? Do we need any condition to ensure the result, such as Independence between X and Y?

Thanks.
Yes, you do need independence. Consider the case X = Y, the resulting distribution is along the diagonal.
 
Orodruin said:
Yes, you do need independence. Consider the case X = Y, the resulting distribution is along the diagonal.
Thanks.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top