A seeming contrdiction in deriving wave function for delta function potential

kof9595995
Messages
676
Reaction score
2
First of all, let me copy the standard solution from Griffiths, section 2.5, just for the sake of clarity.
PotentialV(x) = - \alpha \delta (x)

The bound state eigenfunction:
\psi (x) = \left\{ \begin{array}{l}<br /> B{e^{\kappa x}}{\rm{ (}}x \le 0{\rm{)}} \\ <br /> B{e^{ - \kappa x}}{\rm{ (}}x \ge 0{\rm{)}} \\ <br /> \end{array} \right.{\rm{ where }}\kappa = \frac{{\sqrt { - 2mE} }}{\hbar }
Integrate time independent schrodinger's equation from -infinitesimal to +infinitesimal to get an imposed condition
- \frac{{{\hbar ^2}}}{{2m}}\int_{ - \varepsilon }^{ + \varepsilon } {\frac{{{d^2}\psi }}{{d{x^2}}}} dx + \int_{ - \varepsilon }^{ + \varepsilon } {V(x)} \psi (x)dx = E\int_{ - \varepsilon }^{ + \varepsilon } {\psi (x)dx}
For right hand side, since the we're integrating a finite function in a infinitesimal region
\int_{ - \varepsilon }^{ + \varepsilon } {\psi (x)dx} = 0
So we have
- \frac{{{\hbar ^2}}}{{2m}}\mathop {\lim }\limits_{\varepsilon \to 0} ({\left. {\frac{{d\psi }}{{dx}}} \right|_{ + \varepsilon }} - {\left. {\frac{{d\psi }}{{dx}}} \right|_{ - \varepsilon }}) = \alpha \psi (0) \Rightarrow - 2B\kappa = - \frac{{2m\alpha }}{{{\hbar ^2}}}B
so \kappa = \frac{{m\alpha }}{{{\hbar ^2}}}
and consequentlyE = - \frac{{m{\alpha ^2}}}{{2{\hbar ^2}}} and B = \frac{{\sqrt {m\alpha } }}{\hbar }(normalization)

And here comes my problem: instead of integrating a infinitesimal region, I tried to integrate the whole x-axis just to check the consistency
- \frac{{{\hbar ^2}}}{{2m}}\int_{ - \infty }^{ + \infty } {\frac{{{d^2}\psi }}{{d{x^2}}}} dx + \int_{ - \infty }^{ + \infty } {V(x)} \psi (x)dx = E\int_{ - \infty }^{ + \infty } {\psi (x)dx}
in which:
\int_{ - \infty }^{ + \infty } {\psi (x)dx} = \frac{2}{\kappa }
- \frac{{{\hbar ^2}}}{{2m}}\int_{ - \infty }^{ + \infty } {\frac{{{d^2}\psi }}{{d{x^2}}}} dx = - \frac{{{\hbar ^2}}}{{2m}}({\left. {\frac{{d\psi }}{{dx}}} \right|_{ + \infty }} - {\left. {\frac{{d\psi }}{{dx}}} \right|_{ - \infty }}) = 0
Finally,
- \alpha \psi (0) = \frac{{2E}}{\kappa } \Leftrightarrow - \alpha B = \frac{{2E}}{\kappa }
Now if we sub in what we've got in the first part, e.g.\kappa = \frac{{m\alpha }}{{{\hbar ^2}}}, E = - \frac{{m{\alpha ^2}}}{{2{\hbar ^2}}}, B = \frac{{\sqrt {m\alpha } }}{\hbar }
we find
\frac{{\sqrt {m\alpha } }}{\hbar } = 1

This is obviously incorrect, since m and alpha are arbitrary. So where did I get wrong?
 
Physics news on Phys.org
You forgot the normalization of the wavefunction. The integral you quote should be:
<br /> \int_{ - \infty }^{ + \infty } {\psi (x)dx} = \frac{2B}{\kappa }<br />
If you do the same trick, you'll just get 1=1 instead of what you have.
 
Ah,you're right. Thanks
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top