A Thought Experiment with Time Dilation

chemiker
Messages
2
Reaction score
0
A thought experiment:

Reference frame: A surface in space with no atmosphere.
A rocket ship is approaching just above the level of the surface. Its measured velocity is a constant 0.8c (0.8 times the speed of light) relative to the surface. Special relativity predicts that time in the spaceship runs at 0.6 times that on the space surface.

The spaceship has a very small window which will face the space surface when it arrives, as well as two light detectors, one at the window and a long one 1 m away and parallel to the window. A laser beam projects a beam perpendicular to the space surface and in the path of the coming spaceship window. A very short flash of light falls on the window detector and then on the detector 1m away as the spaceship passes.

The detectors in the spaceship show the beam to take a skewed path because of the ships 0.8c motion relative to the light beam. The length of that path is observed to be (0.8^2+1^2)^1/2 = 1.28 m. Since the time dilation is 0.6 relative to the surface, the time difference at the two detectors measured by a clock in the spaceship should be: 0.6x1.28/c where c is in m/sec. This yields 2.56x10^-9 seconds. Dividing by the distance 1.28 m gives a time it took the beam to travel a meter of 2.00x10^-9, yielding a measured c of 5.0x10^8 m/sec if the time dilation were correct. Of course this is nonsense. (Note that 5.0x10^8/0.6 = 3.0x10^8 suggesting maybe there is no time dilation in the transverse direction.)

A person on the space surface, knowing that the window and screen are 1 m apart and recognizing that the very short beam will travel in a straight line calculates that the light beam takes 1/c seconds to traverse the distance between the window and screen from his reference position which is 3.33x10^-9 sec. A person in the spaceship sees the light beam traveling 1.28 m in his reference frame. Since he must, according to relativity, measure c at 3.0x10^8 m/sec he should experience a time delay between the two light signals of 1.281/3.0x10^8 or 4.27x10^9 sec. Thus the time dilation factor would be 0.781 in the transverse direction and not 0.6 as special relativity would predict for the direction of travel.

How can time be dilated differently in one direction (the direction of travel) from the transverse direction? A clock cannot distinguish directions. Perhaps someone can straighten me out, or time dilation in special relativity crumbles.
 
Last edited:
Physics news on Phys.org
The length of that path is observed to be (0.8^2+1^2)^1/2 = 1.28 m.
No, it's (1.33^2+1^2)^1/2 = 1.67 m. The distance is 0.8 m in the surface frame, from which the rocket appears length contracted.
 
Ich said:
No, it's (1.33^2+1^2)^1/2 = 1.67 m. The distance is 0.8 m in the surface frame, from which the rocket appears length contracted.
You are right, of course. I didn't consider the fact that in the rockets reference frame distance in the direction of the surface has to expand by a factor of 1.33 if time slows by a factor of 0.6 so that both observers see the other's reference frame receeding at 0.8 c. Thanks for straightening me out.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top