eljose
- 484
- 0
We have using Perron,s formula an integral for M(x) Mertens function:
\int_{c-i\infty}^{c+i\infty}ds\frac{x^{s}}{\zeta(s) s}= 2i\pi M(x)
Of course we can,t calculate this integral directly, let,s put x=exp(t) and s=c+iu then our integral becomes:
\int_{-\infty}^{\infty}du \frac{e^{iut+ict}}{\zeta(c+iu)(c+iu)}
now we could writte the complex integrand involving \zeta(c+iu)(c+iu) as a sum of a real and complex part U(c,u)+iV(c,u), so we should make an approach for big t--->oo of the integral:
\int_{-\infty}^{\infty}duU(c,u)e^{iut+ict}
so we can calculate M(e^{t}) of course RH is true iff for big t the factor:
M(e^{t})e^{-t(1/2+e)} 0<e<<<<<<1 (epsilon)
tends to 0, so we could give a "proof" of Riemann Hypothesis.
\int_{c-i\infty}^{c+i\infty}ds\frac{x^{s}}{\zeta(s) s}= 2i\pi M(x)
Of course we can,t calculate this integral directly, let,s put x=exp(t) and s=c+iu then our integral becomes:
\int_{-\infty}^{\infty}du \frac{e^{iut+ict}}{\zeta(c+iu)(c+iu)}
now we could writte the complex integrand involving \zeta(c+iu)(c+iu) as a sum of a real and complex part U(c,u)+iV(c,u), so we should make an approach for big t--->oo of the integral:
\int_{-\infty}^{\infty}duU(c,u)e^{iut+ict}
so we can calculate M(e^{t}) of course RH is true iff for big t the factor:
M(e^{t})e^{-t(1/2+e)} 0<e<<<<<<1 (epsilon)
tends to 0, so we could give a "proof" of Riemann Hypothesis.