- 7,226
- 66
Abel’s Lemma,
Let a_0,a_1,a_2,\cdots and b_0,b_1,b_2,\cdots be elements of a field;
lets_k = a_0 + a_1 + a_2 + \cdots + a_k k= 0,1,2,… And s-1 =0.
Then for any positive real integer n and for m= 0,1,2,…,n-1,
\sum^n _{k=m} a_k b_k = \sum ^{n-1}_{k=m} (b_k - b_{k+1}) s_k + b_n s_n - b_m s_{m-1}
Proof:
Expanding the terms of the sum gives
(b_m - b_{m+1})s_m + (b_{m+1} - b_{m+2} )s_{m+1} + \cdots + (b_{n-1} - b_n) s_{n-1} + b_n s_n - b_m s_{m-1}
By the definition of sk we have sk+1 = sk + ak+1
Now for the expansion of the sum we can write:
(b_m s_m - b_{m+1} s_m + b_{m+1} s_{m+1} - b_{m+2} s_{m+1} + \cdots + b_{n-1} s_n - b_n s_{n-1} + b_n s_n - b_m s_{m-1}
b_m a_m + b_m s_{m-1} - b_{m+1} s_m + b_{m+1} s_m + b_{m+1} a_{m+1} - b_{m+2} s_{m+1} + \cdots + b_{n-1} s_n - b_n s_{n-1} + b_n s_n - b_m s_{m-1}
Now group canceling terms:
b_m a_m + ( b_m s_{m-1} -b_m s_{m-1}) + ( - b_{m+1} s_m + b_{m+1} s_{m}) + b_{m+1} a_{m+1} + \cdots + b_{n-1} a_{n-1} + b_{n-1} s_n - b_n s_{n-1} + b_n s_n
All that remains is
\sum _{k=m} ^ n a_k b_k
Is this proof sufficient or do I need do an induction proof?
Let a_0,a_1,a_2,\cdots and b_0,b_1,b_2,\cdots be elements of a field;
lets_k = a_0 + a_1 + a_2 + \cdots + a_k k= 0,1,2,… And s-1 =0.
Then for any positive real integer n and for m= 0,1,2,…,n-1,
\sum^n _{k=m} a_k b_k = \sum ^{n-1}_{k=m} (b_k - b_{k+1}) s_k + b_n s_n - b_m s_{m-1}
Proof:
Expanding the terms of the sum gives
(b_m - b_{m+1})s_m + (b_{m+1} - b_{m+2} )s_{m+1} + \cdots + (b_{n-1} - b_n) s_{n-1} + b_n s_n - b_m s_{m-1}
By the definition of sk we have sk+1 = sk + ak+1
Now for the expansion of the sum we can write:
(b_m s_m - b_{m+1} s_m + b_{m+1} s_{m+1} - b_{m+2} s_{m+1} + \cdots + b_{n-1} s_n - b_n s_{n-1} + b_n s_n - b_m s_{m-1}
b_m a_m + b_m s_{m-1} - b_{m+1} s_m + b_{m+1} s_m + b_{m+1} a_{m+1} - b_{m+2} s_{m+1} + \cdots + b_{n-1} s_n - b_n s_{n-1} + b_n s_n - b_m s_{m-1}
Now group canceling terms:
b_m a_m + ( b_m s_{m-1} -b_m s_{m-1}) + ( - b_{m+1} s_m + b_{m+1} s_{m}) + b_{m+1} a_{m+1} + \cdots + b_{n-1} a_{n-1} + b_{n-1} s_n - b_n s_{n-1} + b_n s_n
All that remains is
\sum _{k=m} ^ n a_k b_k
Is this proof sufficient or do I need do an induction proof?
Last edited: