About a Lorentz matrix and its inverse

BarbaraDav
Messages
14
Reaction score
0
Hi you all.
Please forgive my poor English;
I will try to put my best foot forward!

I'm studying special relativity mostly on Naber's
"The geometry of Minkowski spacetime". Just after
introducing the concept of Lorentz matrix L
(by means of "M" I point its inverse) through
the well known relation

L^c_a L^d_b g_cd = g_ab

he states (pag. 22 equation following 1.3.10) that

L^4_i / L^4_4 = - M^i_4 / M^4_4

As far as I see no other assumption is involved in.
Please, can you give any hint about establishing
this equation ?

Best Regards
Barbara Da Vinci
 
Physics news on Phys.org
If I understand your notation correctly, that equation is equivalent to saying that if the velocity of frame F' in F is \vec v, then the velocity of frame F in F' is -\vec v. I don't know how to motivate that statement other than by saying that it makes some sense to think of it as an interpretation of Einstein's first postulate. ("The laws of physics are the same in all inertial frames").

Let me know if you need more information to understand why those two statements are the same. Hint: What do you get when a Lorentz transformation acts on (t,x,y,z)=(1,0,0,0)?
 
Welcome to Physics Forums!

Use equation (1.2.11).
 
Thanks for replying: I got it !
Have a great day !
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...

Similar threads

Replies
2
Views
4K
Back
Top