Prove that:(adsbygoogle = window.adsbygoogle || []).push({});

g is a generator of Fp* if and only if g^(p-1) = 1 (mod p) and gq ≠ 1 (mod p) for all prime divisors q of (p – 1).

I am thinking about applying Fermat's theorem...but don't know how...

Request help, thanks.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# About field

Loading...

Similar Threads - field | Date |
---|---|

I Need clarification on a theorem about field extensions/isomorphisms | Dec 19, 2017 |

I Splitting Fields: Anderson and Feil, Theorem 45.6 ... | Jun 23, 2017 |

I Splitting Fields: Anderson and Feil, Theorem 45.5 ... | Jun 22, 2017 |

I Splitting Fields: Anderson and Feil, Theorem 45.4 ... | Jun 21, 2017 |

I Galois Theory - Fixed Field of F and Definition of Aut(K/F) | Jun 18, 2017 |

**Physics Forums - The Fusion of Science and Community**