Abstract algebra: Rings and Ideals

lmedin02
Messages
52
Reaction score
0

Homework Statement


The problem is to show that a subset A of a ring S is an ideal where A has certain properties. S is a ring described as a cartisian product of two other rings (i.e., S=(RxZ,+,*)). I have already proved that A is a subring of S and proved one direction of the definition of an ideal. But, the other direction has brought me to having to show that R is commutative. It is given that R is a ring without zero divisors and without identity.


Homework Equations





The Attempt at a Solution


I know that a ring R is commutative if it has the property that ab=ca implies b=c when a is not zero. I have attempted various simple manipulations of this statement by using the fact that R is a ring without zero divisors and without an identity.
 
Physics news on Phys.org
In other words, is a ring R without zero divisors and without an identity commutative.
 
An integral domain has a unity (i.e., identity). In my case, R has no unity so it is not an integral domain.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top