Accelerating to speed of light

kannank
Messages
25
Reaction score
0
When the an object is accelerated and when the velocity approaches the speed of light, its mass increases exponentially the force required to accelerate the object increases exponentially. So it cannot be done. Fine.

But what if I travel in a spaceship with A LOT of fuel and the spaceship is accelerated constantly by burning the fuel? When the velocity of spaceship approaches the speed of light, does increase mass in its own frame-of-reference?

This may be a silly question. I got confused somehow.

cheers!
KANNAN
 
Physics news on Phys.org
kannank said:
When the velocity of spaceship approaches the speed of light, does increase mass in its own frame-of-reference?
No, rest mass is an invariant quantity, and an objects mass in its own frame is the invariant mass.
 
DaleSpam said:
No, rest mass is an invariant quantity, and an objects mass in its own frame is the invariant mass.

Then what stops me from accelerating my spaceship to FTL? I still got fuel left in my spaceship.
 
The mass that is moving is not aware that its mass increases. So the answer to your question is no, no matter how much fuel you burn you still cannot reach the speed of light.
We can choose a reference point (e.g. some distant quasar) for the Earth which makes our velocity a significant fraction of the speed of light. Do you feel any heavier now? No matter how fast you are moving with respect to some outside reference point your flash light will still work the same.
 
kannank said:
Then what stops me from accelerating my spaceship to FTL? I still got fuel left in my spaceship.

The geometry of space time.
 
Suppose you have a spaceship which undergoes constant acceleration as measured by an on-board accelerometer, and that after 6 months' travel (as measured by an on-board clock) you have reached half the speed of light (0.5c) relative to your starting point. You might think that after another 6 months you would reach the speed of light. But you don't, because the rule for "adding" velocities is notu + vbut\frac{u+v}{1+\frac{uv}{c^2}}.So , in fact your velocity would be\frac{0.5+0.5}{1+0.5^2}\,c = 0.8\,c.The formula always gives you an answer less than c, no matter how long you wait.

Another way of looking at this is that everyone measures the speed of light to be the same value relative to themselves (299792458 m/s). So at the start of your journey you reckon you are going 299792458 m/s slower than your target speed, but after 6 months you reckon are still going 299792458 m/s slower than your target speed: you've got no nearer to it.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top