Acceleration of a Falling Bowling Ball: Effects of Rope Cutting

AI Thread Summary
The discussion focuses on the physics problem of a bowling ball suspended by a spring and rope, specifically addressing the tension in the rope and the ball's acceleration after the rope is cut. The tension is calculated as (m*g)/cos(θ), while the challenge arises in determining the acceleration post-rope cutting. Participants discuss the equilibrium of forces and the impact of cutting the rope on the system's dynamics. The horizontal and vertical components of acceleration are explored, leading to a realization about the importance of sign conventions in calculations. Ultimately, the correct approach involves analyzing both components to find the resultant acceleration.
Poetria
Messages
267
Reaction score
42

Homework Statement



You suspend a bowling ball of mass m using a spring and a rope. The spring is horizontal and has spring constant k; the rope makes an angle θ with the vertical.

Answer all parts in terms of m, g, k, and θ.

a) What is the tension T in the rope?

b) Your arch nemesis cuts the rope. What is the acceleration of the ball immediately after the rope is cut?

Homework Equations



Tension: (m*g)/cos(theta)

The Attempt at a Solution


[/B]
I answered a without a problem but I have no idea what to do with b. I tried to use the vertical force when a system is in equilibrium but it doesn't work. Combinations : g*sin(theta), g*cos(theta) don't work either. I guess it is probably simple but I am at my wits' end.
The stretched distance is not given I am wondering what k is for. I could recover x by Hooke's law when the string is in a vertical position: x=-mg/k
 
Physics news on Phys.org
Draw a force vector diagram and show your work, then we can see how to guide you along.
 
Before the rope is cut, the system is in equilibrium. Cutting the rope removes that force. How does that affect the sum of forces? Do any other forces change immediately?

(Out of interest, do you know whether you got part a) correct? If not, would you mind posting your answer?)
 
Thank you very much. I will draw it and post it here. I guess I have a problem with directions.
I thought I could use the formula from a somehow.
 
Bowling ball on a rope.png


I understand this is a spring and can be stretched. It is also a kind of a pendulum isn't it?

By the way I have started to learn things like that in order to understand Newton's Principia and the eighteenth-century discussions about mechanics and metaphysics (e.g. the vis viva controversy.)
 
Poetria said:
I thought I could use the formula from a somehow.
You can. Just try to answer my questions in post #3.
 
From your free body diagram in post #5, what is the horizontal force exerted by the spring on the mass before the rope is cut? Does this force change instantly as soon as the rope is cut, or is initially still the same?

Chet
 
I thought this horizonal force had been initially the same. So I used the formula for the tension force.
I got:

sin(theta)*T=(sin(theta)*(m*g))/cos(theta)=tan(theta)*m*g

Of course to solve it for acceleration I divided it by the mass

a(x)=tan(theta)*g

Well, it is still wrong. :(
 
Poetria said:
I thought this horizonal force had been initially the same. So I used the formula for the tension force.
I got:

sin(theta)*T=(sin(theta)*(m*g))/cos(theta)=tan(theta)*m*g

Of course to solve it for acceleration I divided it by the mass

a(x)=tan(theta)*g

Well, it is still wrong. :(
That's the correct horizontal component of the acceleration. What is the vertical component of the acceleration? From these findings, what is the resultant of the horizontal and vertical components of acceleration?

Chet
 
  • #10
I got it. :) I messed up signs. :) Many thanks. :) :) :)
Bowling ball on a rope2.png
 
Back
Top