coverband
- 170
- 1
1. The velocity vector which describes the motion of a particle (point) in a fluid is \vec {u} = \vec {u}(\vec{x},t), so that the particle follows the path on which \frac {dx}{dt}=\vec{U}(t)=\vec{u}[\vec{x}(t),t].
Write \vec{x}\equiv (x,y,z) and \vec{u} \equiv (u,v,w) (in rectangular Cartesian coordinates), and hence show that the acceleration of the particle is \frac {d\vec{U}}{dt} = \frac {\partial \vec{u}}{\partial t} + (\vec {u} . \nabla) \vec {u} \equiv \frac {D\vec {u}}{Dt}, the material derivative
Acceleration of particle = \frac{d^2 x}{dt^2} = \frac {dU}{dt}=\frac{du}{dt}[\frac {\partial x}{\partial t}, \frac {\partial y}{\partial t}, \frac {\partial z}{\partial t}, 1]
(\vec{u}.\nabla)\vec{u} = uu_x\vec{i} + uv_x\vec{j} + uw_z\vec{k} + vu_y\vec{i} + vv_y \vec{j} + vw_y \vec {k} + wu_z \vec{i} + wv_z \vec{j} + ww_z \vec {k}
Write \vec{x}\equiv (x,y,z) and \vec{u} \equiv (u,v,w) (in rectangular Cartesian coordinates), and hence show that the acceleration of the particle is \frac {d\vec{U}}{dt} = \frac {\partial \vec{u}}{\partial t} + (\vec {u} . \nabla) \vec {u} \equiv \frac {D\vec {u}}{Dt}, the material derivative
Homework Equations
Acceleration of particle = \frac{d^2 x}{dt^2} = \frac {dU}{dt}=\frac{du}{dt}[\frac {\partial x}{\partial t}, \frac {\partial y}{\partial t}, \frac {\partial z}{\partial t}, 1]
(\vec{u}.\nabla)\vec{u} = uu_x\vec{i} + uv_x\vec{j} + uw_z\vec{k} + vu_y\vec{i} + vv_y \vec{j} + vw_y \vec {k} + wu_z \vec{i} + wv_z \vec{j} + ww_z \vec {k}