MHB ACT Problem: Distance, Rate and Time

  • Thread starter Thread starter 816318
  • Start date Start date
  • Tags Tags
    Act Rate Time
AI Thread Summary
Joan rides her bicycle at 15 miles per hour, while Anthony rides at 12 miles per hour, and it will take Joan 5 hours to catch up to Anthony. To find how far ahead Anthony is, the distance can be calculated using the formula d = rt, where r is the relative speed difference of 3 miles per hour (15 - 12). Over 5 hours, Joan will cover 15 miles, while Anthony will cover 12 miles, meaning he is 15 miles ahead. The problem can be framed with Joan and Anthony's positions as functions of time to confirm the distance. The key takeaway is that the distance between them is 15 miles.
816318
Messages
14
Reaction score
0
Joan is riding her bicycle along a track at 15 miles per hour. Anthony, who is ahead of Joan on the same track, is riding his bicycle at 12 miles per hour. If it will take Joan 5 hours to catch Anthony at their current speeds, how many mile ahead of Joan on the track is Anthony?

How would you solve it using the d=rt formula?
 
Mathematics news on Phys.org
Re: ACT problem

816318 said:
Joan is riding her bicycle along a track at 15 miles per hour. Anthony, who is ahead of Joan on the same track, is riding his bicycle at 12 miles per hour. If it will take Joan 5 hours to catch Anthony at their current speeds, how many mile ahead of Joan on the track is Anthony?

How would you solve it using the d=rt formula?

Hi 816318, could you expand on what you intend the d = rt formula to mean? Maybe i should know from experience.. I'm thinking distance equals something by time.. Ha :p. I'll feel silly when i realize, but we have to know for sure!
 
Re: ACT problem

816318 said:
Joan is riding her bicycle along a track at 15 miles per hour. Anthony, who is ahead of Joan on the same track, is riding his bicycle at 12 miles per hour. If it will take Joan 5 hours to catch Anthony at their current speeds, how many mile ahead of Joan on the track is Anthony?

How would you solve it using the d=rt formula?

We can simplify this problem a bit if we orient our coordinate axis such that Anthony is at the origin and Joan is some distance away approaching the origin at 3 mph. Can you proceed?
 
Re: ACT problem

MarkFL said:
We can simplify this problem a bit if we orient our coordinate axis such that Anthony is at the origin and Joan is some distance away approaching the origin at 3 mph. Can you proceed?

Thanks I got it now, d=3(5) 15!
 
Re: ACT problem

Another approach would be to initially put Joan at the origin and Anthony at $d$. Disnaces are in miles and time in hours. And then:

Joan's position as a function of time is:

$$J(t)=15t$$

Anthony's position as a function of time is:

$$A(t)=12t+d$$

Now, we are told they meet in 5 hours, or:

$$J(5)=A(5)$$

$$15(5)=12(5)+d$$

$$d=15(5)-12(5)=3(5)(5-4)=15$$
 
Re: ACT problem

Joppy said:
Hi 816318, could you expand on what you intend the d = rt formula to mean? Maybe i should know from experience.. I'm thinking distance equals something by time.. Ha :p. I'll feel silly when i realize, but we have to know for sure!
distance traveled= rate of travel times time traveled.

You may know it better as "d= vt" where "v" is now "velocity".
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top