You are still mixed up on several points but you are making progress. Let me comment:
1) The easiest way for each ship and Earth to communicate their time to the others is through a clock that emits a bright flash periodically, say once an hour. Each observer has two counters, one to count its own outgoing flashes and one to count the other observer's incoming flashes. When they are at their closest approach, they each reset all their counters to zero. Then as they move apart, they will each observe that the incoming flashes are coming in at a slower rate than their outgoing flashes. They can each calculate the ratio of the rate of incoming flashes to outgoing flashes and it will be a number less than one and they both will get the same ratio. From this ratio, they each can determine the relative speed between them and from that, they can each determine the time dilation factor. Look up relativistic doppler for more information.
2) You should not consider the measurements to be not real, even though you are right that simultaneity is not an issue here but that's because simultaneity is only a concern when you are comparing results between two different frames of reference and we are not defining any frame of reference in this explanation. Later on, if you want to, you can revisit this scenario from different frames of reference and you will discover that what I am describing here is the same no matter which frame of reference you use. Just remember, what each observer measures and observes will be the same however you analyze the situation.
3) Ship 1 communicates the value on its counters to ship 2 which then sets its counters accordingly. The ships at this point cannot tell by observing the flashes how far away the Earth is. Ship 1 can calculate how far it has traveled by simply multiplying the number of outgoing flashes by the distance traveled per flash which is .866 light hours. Ship 2 can do the same calculation (because the value in the outgoing counter from ship 1 has been communicated to it) and will arrive at the same distance. There is no meaning to your statement that the Earth appears further away or "the actual time of Earth is much later than the calculated time of ship 1". These kinds of conclusions would be frame dependent and not invariant. We aren't concerned about a frame in this analysis.
4) As ship 2 takes over the role of counting incoming flashes to outgoing flashes and calculating the ratio of their rates, it immediately sees the ratio as much larger, in fact, it is the reciprocal of what ship 1 saw. But using the Relativistic Doppler formula, it calculates exactly the same relative speed between itself and Earth and therefore, exactly the same time dilation as ship 1 saw. We should mention that at the point of switch over, ship 1 shuts off its flashes and ship 2 turns on its flashes, we don't want the Earth observer to later on get confused seeing flashes from two different ships at the same time. And be aware that the observer on Earth is completely unaware of this "turn-around" event happening and keeps measuring the same low Relativistic Doppler rate as before for a very long time, but they both continue to observe the same time dilation throughout this entire scenario.
Now here is the key to the different aging: from the moment of "turn-around" to the end of the scenario, the ships have spent an equal amount of time counting incoming flashes from Earth, half of them at a low rate (ship 1) and half of them at a high rate (ship 2). But the Earth doesn't see the transition from low rate to high rate until much, much later because it has to wait for all those flashes that were in transit from the ships' "turn-around" event to Earth to finally get back to Earth. When they do see the "turn-around" event, long after it happened, they will start counting the high rate for a relatively short period of time and this results in a much lower count on Earth's incoming counter than on the ship's incoming counter. Remember, counters on clocks keep track of accumulated time.
I explained all this, by the way, in post #2. Also, this is a description of what actually happens and has nothing to do with the Theory of Special Relativity or any other theory. As I said earlier, once you understand what is actually happening, you can go ahead, pick a frame of reference and "explain" it again using Special Relativity. A good frame of reference to start with would be the one in which Earth is at rest. Then you can do it again with the frame of rest for ship 1 and again for the rest frame of ship 2 and then a fourth frame could be the "average" between ship 1 and Earth where they are each traveling at the same speed in the opposite direction. Doing this explanation in many different frames will give you great insight into how Special Relativity works but it is never necessary to "solve" any problem in more than one frame because they all give the same result.