MHB Adding binomials and trinomials

  • Thread starter Thread starter CSCI MARIO
  • Start date Start date
AI Thread Summary
To add the binomials and trinomials, the denominators must be factored, resulting in (x-2)(x-5)(x-3)(x+3). The numerator is derived by combining the two fractions, leading to the expression (x-3)(x-3)(x+3) + (x+4)(x-2)(x-5). After expanding and simplifying, the resulting numerator is 2x^3 - 6x^2 - 27x + 67. The process involves careful distribution and combination of like terms. Understanding these steps clarifies how the final numerator was achieved.
CSCI MARIO
Messages
1
Reaction score
0
( x - 3/ x^2- 7x + 10 ) + ( x + 4 / x ^ 2 - 9 )
i have to add these and put the denominator in a factored form

(x-5)(x-2)(x-3)(x+3)

but the example in my book came up with

2x^3 - 6x^2 - 27x + 67 as the numerator.
This is what i don't understand.
can someone explain how the numerator was solved.
 
Mathematics news on Phys.org
CSCI MARIO said:
( x - 3/ x^2- 7x + 10 ) + ( x + 4 / x ^ 2 - 9 )
i have to add these and put the denominator in a factored form

(x-5)(x-2)(x-3)(x+3)

but the example in my book came up with

2x^3 - 6x^2 - 27x + 67 as the numerator.
This is what i don't understand.
can someone explain how the numerator was solved.

$$x^2- 7x + 10=0 \Leftrightarrow (x-2) (x-5)=0$$

$$\frac{ x - 3}{ x^2- 7x + 10} + \frac{ x + 4 }{ x^2 - 9}= \frac{x-3}{(x-2)(x-5)}+\frac{x+4}{(x-3)(x+3)} \\ =\frac{(x-3)(x-3)(x+3)}{(x-2)(x-5)(x-3)(x+3)}+\frac{(x+4)(x-2)(x-5) }{(x-3)(x+3) (x-2)(x-5)} \\ =\frac{(x-3)(x-3)(x+3)+(x+4)(x-2)(x-5) }{(x-3)(x+3) (x-2)(x-5)} \\ =\frac{(x^2-9)(x-3)+ (x^2+2x-8)(x-5)}{(x-3)(x+3) (x-2)(x-5)}\\ =\frac{x^3-3x^2-9x+27+x^3-3x^2-18x+40}{(x-3)(x+3) (x-2)(x-5)}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
15
Views
5K
Replies
8
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
10
Views
2K
Back
Top