Adiabatic Process: C_v ≠ 0 Despite dQ = 0

AI Thread Summary
In an adiabatic process, where dQ=0, the specific heat at constant volume, C_v, does not equal zero due to the nature of the equations governing thermodynamic systems. The confusion arises when attempting to derive relationships involving dQ and dT, as both can approach zero simultaneously, leading to indeterminate forms like 0/0. The ideal gas law indicates that pressure changes can occur without heat exchange, but this requires a fixed number of particles and volume, complicating the analysis. The discussion emphasizes the importance of understanding the physical implications of these equations rather than relying solely on algebraic manipulation. Ultimately, the relationship between heat, work, and internal energy remains complex in adiabatic conditions.
Science news on Phys.org
I think you're tricking yourself with some algebraic manipulations instead of thinking about the actual physics.

Here's what I think you're saying:
"We have Cv= dU/dT = (dQ-pdV)/dT|V = dQ/dT. Now if dQ=0 for an adiabatic process, then dQ/dT=0."

I think in this pseudo-algebra, the problem is that you can't possibly compute dQ/dT because dT is also zero if you insist there is no heat AND no work. If we have dU=dQ-pdV and both dQ and dV are zero, then dU is zero. Your equation basically changes into to 0=0 and it's not surprising you run into trouble when trying to take derivatives of this.

Let's look at it from another angle. The equation of state for the ideal gas is PV=NkT. Now in your example we have a closed system so N is fixed (dN = 0), and if we are using the specific heat at constant volume, then we are assuming dV=0. So we have V dP=Nk dT. Without doing any work (which would require nonzero dV), the only possible way to change the temperature is by increasing the system's pressure. The only way we could increase the system's pressure is by adding heat, but for an adiabatic process this is zero. so we have Nk dT = V dP = 0. So when you write dQ/dT = 0/dT = 0/0. So the pseudo-algebra has a divide by zero error.

Edit: Andrew Mason gave a nice analogy that is probably a better explanation than mine. But his rhetorical question "Does the mass go to zero if there is no force acting on it?" also can be interpreted in terms of the m=F/a=0/0 fallacy.
 
Last edited:
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top