Calculating the Time and Velocity of Two Balls Thrown from a Balcony

Leo34005
Messages
51
Reaction score
0

Homework Statement


Two students are on a balcony 23.4 m above the street. One student throws a ball, b1, vertically downward at 15.5 m/s. At the same instant, the other student throws a ball, b2, vertically upward at the same speed. The second ball just misses the balcony on the way down.

(a) What is the difference in time the balls spend in the air?

(b) What is the velocity of each ball as it strikes the ground?
velocity for b1
velocity for b2

(c) How far apart are the balls 0.480 s after they are thrown?


Homework Equations



s = ut + 1/2at
Not to sure

The Attempt at a Solution



I am considering g = 10 m / sec^2.

Motion of the first ball:

=>23.4 = (15.5)t + 10(t^2)/2
=>23.4 = 15.5 t + 5(t^2)
=>(t^2) + 3.1t - 4.68 = 0
=> t = (-3.1 + 5.3) / 2 = 0.6 sec

Motion of the second ball

=>23.4 = - (15.5)t + 10(t^2)/2
=>23.4 = -(15.5 t) + 5(t^2)
=>(t^2) - 3.1t - 4.68 = 0
=> t = (3.1 + 5.3) / 2 = 4.2 sec

Difference in time = 3.6 sec
 
Physics news on Phys.org
Need some help here
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top