Advantages of Hermite-Gaussian beams?

  • Thread starter Thread starter macabre
  • Start date Start date
  • Tags Tags
    beams gaussian
AI Thread Summary
Hermite-Gaussian beams are a type of laser beam characterized by their coherent light source and electromagnetic field properties, which are well approximated by Gaussian functions. They are particularly useful in engineering calculations, such as when determining the necessary specifications for laser applications like bouncing beams off lunar retroreflectors. The waist size of a Gaussian beam is crucial, as it affects beam divergence and overall performance. Additionally, Hermite functions can be used to analyze different modes of oscillation in lasers, which is vital for mode selection. Understanding these concepts is essential for effectively utilizing lasers in various applications.
macabre
Messages
6
Reaction score
0
And areas of usage? I will be glad if you help me.
 
Engineering news on Phys.org
Lasers normally make them so I think you're stuck with them.
 
I took a look at some books there are lots of formulas and too litle information. I want to know what it does? What is the difference from other lasers? etc.
 
macabre said:
I took a look at some books there are lots of formulas and too litle information. I want to know what it does? What is the difference from other lasers? etc.

Not clear what you are asking. A laser is a coherent light source which produce electromagnetic fields (E and B fields). The functional form of these E and B fields is well approximated by a system of functions known as Gaussian Beams. A number of approximations are involved having to do with a paraxial approximation but other than that they form a decent basis for describing laser beams.

Now, how would one use such a function is in making engineering calculations. Let's say you would like to bounce a laser beam off the retroreflectors on the moon the Apollo mission left there. You would need to size the laser and select a telescope to insure that enough light would make the return trip. If you just point a laser pointer at the moon it won't work because the waist size (a fundamental parameter of a gaussian beam which determines the minimum beam diameter at the center of the laser) of the beam is too small and the resulting divergence of the beam too large as a result. One might use gaussian beams to make these estimates.

You can also discuss the various modes of oscillation in a laser using the Hermite functions. This is important especially if you're relying on mode selection in your laser.

I'm by no means an expert on this matter having only briefly looked at the formalism. I think your question is of a type that is often asked by engineering students. I would look at gaussian beams as more of an answer to which you need a question. Some of these questions concern lasers and their applications.
 
  • Like
Likes macabre
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Thread 'How Does Jaguar's 1980s V12 Dual Coil Ignition System Enhance Spark Strength?'
I have come across a dual coil ignition system as used by Jaguar on their V12 in the 1980's. It uses two ignition coils with their primary windings wired in parallel. The primary coil has its secondary winding wired to the distributor and then to the spark plugs as is standard practice. However, the auxiliary coil has it secondary winding output sealed off. The purpose of the system was to provide a stronger spark to the plugs, always a difficult task with the very short dwell time of a...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top