I have two lasers with different intensity distributions (shown below) — one is Gaussian and the other one is rectangular (having the shape of a Fresnel diffraction pattern at the target).(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to compare the efficacy of the two lasers for burning a certain material (I am really comparing their wavelengths). But the two lasers have different total powers. I was told that the only way I can get a more direct comparison is to adjust the spot sizes so that the two have similar "intensities", i.e.,

$$\frac{P_{\text{Gaussian}}}{A_{\text{Gaussian}}}\approx\frac{P_{\text{Rectangular}}}{A_{\text{Rectangular}}}.$$

In many places, I have encountered people stating an intensity value in this way (dividing the total power of the beam by the beam cross-sectional area: ##I=P/A##). However, to me, it seems that this only works if you have a constant intensity distribution.

In fact, in optics textbooks, the intensity of a Gaussian beam is evaluated as the intensity of asingle pointwithin the x-y plane (power transferred per unit area):

$$I(x,y,z)=I_{0}\left[\frac{w_{0}}{w(z)}\right]^{2}\exp\left[-2\frac{\left(x^{2}+y^{2}\right)}{w(z)^{2}}\right].$$

where ##w(z)## is the radius of the beam at a distance ##z##. The concept seems to be only applicable to a given point — we can't really speak about the intensity of a beam spot as a whole. So does the usage of ##I=P/A## have any validity?

Is there any way I can get a more like-for-like comparison when the distributions of the lasers are different?

Any suggestions would be greatly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Intensity of a Gaussian laser beam

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**