Affine Connection Γ in Terms of Tetrad: Help Needed

lapo
Messages
4
Reaction score
0
Hi, some one know the expression of the affine connection Γ in terms of tetrad formalism? I would like also some references if it's possible, i found a hit but i think that is wrong... please help me it's so important!
 
Physics news on Phys.org
$$Γ^{\lambda} _{μν} = \frac{1}{2} (e^κ ⋅ e^λ) ( ∂_μ (e_κ ⋅ e_ν) + ∂_ν (e_κ⋅e_μ) - ∂_κ (e_μ⋅e_ν))$$
 
PWiz said:
$$Γ^{\lambda} _{μν} = \frac{1}{2} (e^κ ⋅ e^λ) ( ∂_μ (e_κ ⋅ e_ν) + ∂_ν (e_κ⋅e_μ) - ∂_κ (e_μ⋅e_ν))$$
I'm loking for this relation:
\begin{equation}
\Gamma^c_{ab}=-\Omega_{ab}\,^c+\Omega_b\,^c\,_a-\Omega^c\,_{ab} \end{equation}
where $\Omega$ is:
\begin{equation}
\Omega_{ab}\,^c=e^\mu\,_ae^\nu\,_b\partial_{[\mu}e_{\nu]}\,^c
\end{equation}
But i have an extra term and i don't understand where is the mistake
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top