Ways to Overcome Negative Signs in Math Problems | Expert Tips

  • Thread starter Thread starter Tyrion101
  • Start date Start date
  • Tags Tags
    Stupid
AI Thread Summary
Struggles with negative signs in math problems can lead to frustration and anxiety about passing a class. A suggestion is to develop a habit of checking answers for consistency after completing calculations, which can help identify mistakes. Using a computer algebra system for calculations is an easy but less educational solution. Practicing spotting negative signs in problems before solving them may also be beneficial. Ultimately, reinforcing these habits can improve accuracy and confidence in math.
Tyrion101
Messages
166
Reaction score
2
I'm getting tired of getting wrong answers and going back and doing them again and again only to find there's a negative sign in the problem I didn't see through the gigantic problem I just finished. If I were doing an actual classroom and not an online that doesn't allow shown work... I'd at least get partial credit, and it's freaking me out, because I'm beginning to wonder if I'll pass this class because of it. I've practiced and practiced and I just don't seem to see the signs when it matters, and I don't know what to do, and don't want to give up, any advice?
 
Mathematics news on Phys.org
Are you making an extra effort to think before you write when you encounter a negative sign?
 
I try, but for whatever reason I just miss signs all together especially in certain places of problems. Maybe I need to spend tome not doing the problems and just spotting signs in the original?
 
Easy solution: Since you're doing this online, do all the calculations with a computer algebra system. No one will ever know.

Harder (but ultimately better) solution: Develop the habit that every time you finish a problem (and also in the middle when you reach a stopping point), you check whether the answer you got makes sense. It's very unusual to have a problem where you can't check the answer somehow. You don't have to be 100% accurate, just good enough.

Here's an example: Someone asks you to find ##\sum_{n=1}^\infty {x^n \over n}## for ##\left|x\right| < 1##. You do a bunch of work and come up with ##\log(1-x)##. Instead of just typing it in right away, try plugging in a number for ##x## to see if the answer makes sense. As it turns out, if ##x = 1/2##, this answer does not make sense, because it is negative, whereas all the terms in the sequence were positive. So something went wrong, and you can now go through your work to locate it.

Another example: You have to find the point where ##\log(u+1) - u^2## is maximized. After a bunch of work, you get the answer 1/2. As a sanity check, the derivative should be zero there. It isn't, so something went wrong -- who knows exactly what, but something.
 
You know I did think of writing an algebra solver, just for fun. But it'd be too tempting to use it in the class...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top