Algorithm for an elliptic equation

  • Thread starter Thread starter Rafajafar
  • Start date Start date
  • Tags Tags
    Algorithm
Rafajafar
Messages
4
Reaction score
0
Hello,
I'm trying to create my own version of the Sieve of Atkin for my Algorithm class final project, but ran into a wall. I want to be able to create a method of algorithmically finding the number of integer coordinate pair solutions such that x > 0 and y > 0 for the following equations:

4x^2 + y^2 = n.
3x^2 + y^2 = n.
3x^2 - y^2 = n.

For a set of particular n determined earlier in the program. This is NOT a set of related equations. Each equation is separate from each other as different cases.

Now, I know how to do this analytically, but telling a computer to do this without using the brute force method of checking each and every number combination (which slows down the program by the order of N^2) is posing a problem.

I was wondering if perhaps anyone here knows of a technique in linear algebra that could speed this process up? Perhaps some matrix algebra manipulation I could apply to each equation to find the number of coordinate pair solutions faster?

Please, any help would be much appreciated.
 
Physics news on Phys.org
This is a rather complicated question which is dealt with in algebraic geometry, subsection elliptic curves. I don't know about specific algorithms, but I would assume that there are some. Probably not linear in time, but maybe in ##O(n\log n)## or similar. So the size of ##n## determines whether it is worth searching and implementing. There is no short answer which you might have looked for.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top