Alternating series, error estimation & approximation

Homework Statement

$$\Sigma$$(-1)$$^{n+1}$$$$\frac{1}{n!}$$

How many terms will suffice to get an approximation within 0.0005 of the actual sum? Find that approximation.

No idea.

The Attempt at a Solution

What I tried doing is setting my absolute value of the series less than 0.005, but I have no idea how to get rid of that factorial.

Related Calculus and Beyond Homework Help News on Phys.org
vela
Staff Emeritus
Homework Helper
What does the alternating series theorem tell you?

lanedance
Homework Helper
as the magnitude of the terms are monotonically decreasing, and alternating, you could also look at the magnitude of a single term

Last edited:
so I just plug in numbers?

vela
Staff Emeritus
Homework Helper
Yeah.

. . . that doesn't even seem viable to me. . . it's essentially guessing until you get the right error?

vela
Staff Emeritus
Homework Helper
Well, you shouldn't be making a wild guess. What exactly are you trying to do? You never answered my question about what you know about alternating series, in particular, about the error.

the magnitude of the error of n terms is less than the next n + 1 th term?

vela
Staff Emeritus
Homework Helper
Right, so you're trying to solve

$$\frac{1}{(n+1)!} < 0.0005$$

Find how big (n+1)! has to be and then what n would satisfy that.

invert both sides with inequality switched

(n+1)! > 2000

so (6+1)! = 5040 > 2000

so all n > 6 will make an error less than 0.0005?

vela
Staff Emeritus