Amatuer question about electron drift speed.

AI Thread Summary
Drift speed in conductors is influenced by the balance between energy gained from the electric field and energy lost through collisions. Electrons do not continue to accelerate indefinitely because the rate of inelastic collisions increases with velocity, preventing further acceleration once the energy gained equals the energy lost. A constant electromotive force (emf) maintains a steady drift speed rather than causing continuous acceleration. The density of conduction electrons ensures that circuits do not "run out" of electrons, as there are a vast number available in conductors. Overall, the drift speed represents an average velocity that results from these competing factors in an electric circuit.
wil3
Messages
177
Reaction score
1
I'm teaching myself some physics, and I am having some difficulty with the concept of drift speed. My book derived the time between collisions using

ma=Eq

and then substituting the acceleration into the first equation of kinematics and solving for v(final) as the drift speed. The time it took for the average velocity to increase from zero to the drift speed was equal to the time between collisions.

My question is: Why do the electrons cease to accelerate above the drift speed? I am aware that the drift speed is an average, but it seems like a constant emf in a circuit would cause the average velocity to gradually grow. Even if each elastic collision resets the velocity of the progenitor electron to zero, it seems that, with a constant field, eventually the circuit "runs out" of electrons traveling below the drift speed.

So, why don't the electrons keep accelerating in a circuit? Thank you very much for any help.
 
Engineering news on Phys.org
See Wiki on electron mobility at

http://en.wikipedia.org/wiki/Electron_mobility

As the electron velocity increases in a drift field, the inelastic electron (and hole) collisions increase to the point that the energy lost per cm equals the energy gained, so the velocity does not increase further, unless the drift field is increased. Conductors never "run out" of conduction electrons. There are roughly 6 x 1023 conduction electrons per gram molecular weight in a conductor. An average conduction electron drift velocity of 1 cm/sec in copper corresponds to a current of about 13,000 amps per cm2.

Bob S
 
Even in a vacuum, an electron will only reach a speed such that its Kinetic Energy is equal to its charge times the voltage across the gap. The field across a conductor is very small, too, so one wouldn't expect high velocity. (For a perfect conductor the field would be zero, even.) The resistive effect of interactions and the voltage drop across the conductor are, of course, related and must tie in with the limit to the acquired (additional, mean) electron velocity due to 'collisions'. Remember, the mean square (thermal) velocity of the electrons is pretty high in comparison with the drift speed.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top