Undergrad Ampere's Law For Static Magnetic Field

  • Thread starter Thread starter BlackMelon
  • Start date Start date
  • Tags Tags
    Ampere's law Curl
Click For Summary
SUMMARY

The discussion centers on Ampere's Law as it applies to static magnetic fields, specifically the equation Curl(H) = J, where H represents the magnetic field intensity and J denotes current density. The user, BlackMelon, initially misinterprets the implications of the magnetic field outside a current-carrying wire, realizing that the current density in that region is zero. The correct calculation for the current density inside the wire is provided, demonstrating that J = I/(πR²) in the z-direction for points within the wire, derived using the magnetostatic Maxwell equations.

PREREQUISITES
  • Understanding of Ampere's Law and its applications in electromagnetism.
  • Familiarity with magnetostatic Maxwell equations.
  • Knowledge of cylindrical coordinates and vector calculus.
  • Basic principles of magnetic fields generated by current-carrying conductors.
NEXT STEPS
  • Study the derivation and applications of the magnetostatic Maxwell equations.
  • Learn about the implications of Curl and Divergence in vector fields.
  • Explore the behavior of magnetic fields in different geometries, particularly cylindrical geometries.
  • Investigate the relationship between current density and magnetic field intensity in various materials.
USEFUL FOR

Students and professionals in physics, electrical engineering, and applied mathematics, particularly those focusing on electromagnetism and magnetic field analysis.

BlackMelon
Messages
43
Reaction score
7
Hi there!

Please refer to the picture below. I would like to understand the equation Curl(H) = J, where H is the magnetic field intensity and J is the current density. So, I inspect a simple problem.
There is a wire carrying current I in the z-axis direction. a_r, a_phi, and a_z are the unit vectors in the directions of the radius, the tangential line, and z-axis, respectively.

So, from H = I/(2*pi*r)a_phi. I take the curl of this vector (in cylindrical coordinate) and got 0. How does this relate to the current density?

Best
BlackMelon

1695964252946.jpeg
 
Physics news on Phys.org
The field you've written down is the field outside a current carrying wire. What would you expect for the current density outside a wire?
 
Ibix said:
The field you've written down is the field outside a current carrying wire. What would you expect for the current density outside a wire?
Oh well it's zero. That was the silly of me LOL. Thank you very much.

By the way, I have analyzed the inside of the wire H = I*r/(2*pi*R^2) a_phi.
where r is the radius from the center of the wire to the point of interest. R is the radius of the wire. And got the correct answer:
J = curl (H) = I/(pi*R^2) a_z

1695975871845.png
 
  • Like
Likes Dale and Ibix
Adding more information to my previous comment, here is how I calculate the current density inside the wire using curl(H) = J
1696130017446.png
 
The solution in local form is indeed given by using the magnetostatic Maxwell equations as follows:
$$\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{B}=\mu_0 \vec{j}.$$
We have given
$$\vec{j}=\begin{cases}\frac{I}{\pi R^2} \vec{e}_z &\text{for} \quad \rho \leq R \\ 0 &\text{for} \quad \rho>R. \end{cases}$$
To solve this equations it's most simple to make the ansatz
$$\vec{B}=B(\rho) \vec{e}_{\varphi}.$$
Using the formula for the curl in cylinder coordinates you get
$$\vec{\nabla} \times \vec{B}=\frac{1}{\rho} \partial_{\rho} (\rho B) \vec{e}_z.$$
From this you get for ##\rho<R:##
$$\partial_{\rho} (\rho B)=\frac{\mu_0 I}{\pi R^2} \rho.$$
This can be immediately integrated to
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho + \frac{C}{\rho},$$
where ##C## is an integration constant. Since there's no singularity at ##\rho=0##, you get ##C=0##, i.e.,
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho \quad \text{for} \quad \rho<R.$$
For ##\rho \geq R## you have
$$\partial_{\rho} (\rho B)=0 \; \rightarrow \; B=\frac{B_0}{\rho} \quad \text{with} \quad B_0=\text{const}.$$
Now, at ##\rho=R##, ##B## must be continuous, which gives
$$B(\rho)=\frac{\mu_0 I}{2 \pi \rho} \quad \text{for} \quad \rho \geq R.$$
One should also check that ##\vec{\nabla} \cdot \vec{B}=0##, which however is already seen easily to be fufilled by the initial general ansatz.
 
vanhees71 said:
The solution in local form is indeed given by using the magnetostatic Maxwell equations as follows:
$$\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{B}=\mu_0 \vec{j}.$$
We have given
$$\vec{j}=\begin{cases}\frac{I}{\pi R^2} \vec{e}_z &\text{for} \quad \rho \leq R \\ 0 &\text{for} \quad \rho>R. \end{cases}$$
To solve this equations it's most simple to make the ansatz
$$\vec{B}=B(\rho) \vec{e}_{\varphi}.$$
Using the formula for the curl in cylinder coordinates you get
$$\vec{\nabla} \times \vec{B}=\frac{1}{\rho} \partial_{\rho} (\rho B) \vec{e}_z.$$
From this you get for ##\rho<R:##
$$\partial_{\rho} (\rho B)=\frac{\mu_0 I}{\pi R^2} \rho.$$
This can be immediately integrated to
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho + \frac{C}{\rho},$$
where ##C## is an integration constant. Since there's no singularity at ##\rho=0##, you get ##C=0##, i.e.,
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho \quad \text{for} \quad \rho<R.$$
For ##\rho \geq R## you have
$$\partial_{\rho} (\rho B)=0 \; \rightarrow \; B=\frac{B_0}{\rho} \quad \text{with} \quad B_0=\text{const}.$$
Now, at ##\rho=R##, ##B## must be continuous, which gives
$$B(\rho)=\frac{\mu_0 I}{2 \pi \rho} \quad \text{for} \quad \rho \geq R.$$
One should also check that ##\vec{\nabla} \cdot \vec{B}=0##, which however is already seen easily to be fufilled by the initial general ansatz.
Thank you very much for the explanation :)
 
Thread 'Colors in a plasma globe'
I have a common plasma globe with blue streamers and orange pads at both ends. The orange light is emitted by neon and the blue light is presumably emitted by argon and xenon. Why are the streamers blue while the pads at both ends are orange? A plasma globe's electric field is strong near the central electrode, decreasing with distance, so I would not expect the orange color at both ends.

Similar threads

Replies
8
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
2
Views
2K