B An equation from terms of operator del to terms of sums

olgerm
Gold Member
Messages
532
Reaction score
35
https://wikimedia.org/api/rest_v1/media/math/render/svg/a7fd3adddbdfb95797d11ef6167ecda4efe3e0b9
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_in_terms_of_potentials
How to write this formula in terms of sums and vector components?

What is ##v\cdot\nabla## ? I think it is some spatial derivative of speed, but since speed is not a field, it can not be that.

I think rest of the equation is ##F_x=q\cdot(-\frac{\partial\phi}{\partial x}-\frac{\partial A_x}{\partial t}+\sum(v_i \cdot \frac{\partial A_i}{\partial x})-?)## .
Is it correct?
 
Mathematics news on Phys.org
The Lorentz force is the electromagnetic force on an object. That object has a position and a velocity, both of which are vector-valued functions of time.

((\mathbf{v} \cdot \nabla)\mathbf{A})_x = \sum_{j} v_j \frac{\partial A_x}{\partial x_j}
 
pasmith said:
The Lorentz force is the electromagnetic force on an object. That object has a position and a velocity, both of which are vector-valued functions of time.

((\mathbf{v} \cdot \nabla)\mathbf{A})_x = \sum_{j} v_j \frac{\partial A_x}{\partial x_j}

So the equation on Wikipedia page is
##F_x=q\cdot(-\frac{\partial\phi}{\partial x}-\frac{\partial A_x}{\partial t}+\sum_i(v_i \cdot (\frac{\partial A_i}{\partial x}-\frac{\partial A_x}{\partial x_i})))## ?

Is it so?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top